DOI QR코드

DOI QR Code

Extraction of Cole-Cole Parameters from Time-domain Induced Polarization Data

시간영역 유도분극 자료로부터 Cole-Cole 변수 산출

  • Kim, Yeon-Jung (Department of Geophysics, Kangwon National University) ;
  • Cho, In-Ky (Division of Geology and Geophysics, Kangwon National University)
  • 김연정 (강원대학교 지구물리학과) ;
  • 조인기 (강원대학교 지질, 지구물리학부)
  • Received : 2021.09.29
  • Accepted : 2021.11.17
  • Published : 2021.11.30

Abstract

Frequency-domain and time-domain induced polarization methods can provide spectral information about subsurface media. Analysis of spectral characteristics has been studied mainly in the frequency-domain, however, time-domain induced polarization research has recently become popular. In this study, assuming a homogeneous half-space model, an inversion method was developed to extract Cole-Cole parameters from the measured secondary potential or electrical resistivity. Since the Cole-Cole parameters of chargeability, time constant, and frequency index are not independent of each other, various problems, such as slow convergence rate, initial model problem, local minimum problem, and divergence, frequently occur when conventional nonlinear inversion is applied. In this study, we developed an effective inversion method using the initial model close to the true model by introducing a grid search method. Finally, the validity of the developed inversion method was verified using inversion experiments.

주파수 및 시간영역 유도분극 탐사는 지하 매질의 분광 정보를 포함하고 있다. 분광 특성의 분석은 주로 주파수영역 유도분극 탐사에서 연구되어 왔으나, 근래에 시간영역 유도분극에서도 연구가 활발하게 이루어지고 있다. 이 연구에서는 반무한 균질 공간을 가정하고 측정된 2차 전위 및 전기비저항으로부터 Cole-Cole 변수를 추정하는 역산법을 개발하였다. 충전성, 완화시간 및 주파수 승수로 구성되는 Cole-Cole 변수들은 비독립적이기 때문에 통상적인 비선형 역산을 적용할 경우 느린 수렴속도, 적정 초기 모델 설정의 어려움, 지역 극소점, 발산 위험 등의 다양한 문제점이 발생한다. 이 연구에서는 격자 탐색법을 도입하여 참 모델에 근접한 초기 모델을 설정하는 효과적인 역산법을 개발하였다. 마지막으로 다양한 역산 실험을 통하여 개발된 역산법의 타당성을 검증하였다.

Keywords

References

  1. Anderson, W. L., 1975, Improved digital filters for evaluating Fourier and Hankel transform integrals, USGS-GD-75-012, https://doi.org/10.3133/70045426
  2. Cole, K. S., and Cole, R. H., 1941, Dispersion and absorption in dielectrics: 1. Alternating current fields, J. Chem. Phys., 9, 341-351, https://doi.org/10.1063/1.1750906
  3. Doetsch, J., Fiandaca, G., Auken, E., Christiansen, A. V., and Cahill, A. G., 2015a, Field-scale time-domain spectral induced polarization monitoring of geochemical changes induced by injected CO2 in a shallow aquifer, Geophysics, 16, WA113-WA126, doi:10.1190/geo2014-0315.1
  4. Doetsch, J., Ingeman-Nielsen, T., Christiansen, A. V., Fiandaca, G., Auken, E., and Elberling, B., 2015b, Direct current (DC) resistivity and induced polarization (IP) monitoring of active layer dynamics at high temporal resolution, Cold Reg. Sci. Technol., 119, 16-28, doi:10.1016/j.coldregions.2015.07.002
  5. Fiandaca, G., Doetsch, J., Vignoli, G., and Auken, E., 2015, Generalized focusing of time-lapse changes with applications to direct current and time-domain induced polarization inversions, Geophys. J. Int., 203, 1101-1112, doi:10.1093/gji/ggv350
  6. Fiandaca, G., Ramm, J., Binley A., Gazoty, A., Christiansen, A. V., and Auken, E., 2013, Resolving spectral information from time domain induced polarization data through 2-D inversion, Geophys. J. Int., 192, 631-646, https://doi.org/10.1093/gji/ggs060
  7. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., and Christiansen, A. V., 2012a, Mapping of landfills using time-domain spectral induced polarization data: the Eskelund case study, Near Surf. Geophys., 10, 575-586, https://doi.org/10.3997/1873-0604.2012046
  8. Gazoty, A., Fiandaca, G., Pedersen, J., Auken, E., Christiansen, A. V., and Pedersen, J. K., 2012b, Application of time domain induced polarization to the mapping of lithotypes in a landfill site, Hydrol. Earth Syst. Sci., 16, 1793-1804, https://doi.org/10.5194/hess-16-1793-2012, 2012
  9. Guptasarma, G., 1982, Computation of the time-domain response of a polarizable ground, Geophysics, 47(11), 1574-1576, https://doi.org/10.1190/1.1441307
  10. Honig, M., and Tezkan, B., 2007, 1D and 2D Cole-Cole inversion of time-domain induced polarization data, Geophys. Prospect., 55, 117-133, doi:https://doi.org/10.1111/j.1365-2478.2006.00570.x
  11. Johansson, S., Fiandaca, G., and Dahlin, T., 2015, Influence of non-aqueous phase liquid configuration on induced polarization parameters: conceptual models applied to a time-domain field case study, J. Appl. Geophys., 123, 295-309, https://doi.org/10.1016/j.jappgeo.2015.08.010
  12. Johansson, S., Sparrenbom, C., Fiandaca, G., Lindskog, A., Olsson, P. I., Dahlin, T., and Rosqvist, H., 2017, Investigations of a Cretaceous limestone with spectral induced polarization and scanning electron microscopy, Geophys. J. Int., 208(2), 954-972, https://doi.org/10.1093/gji/ggw432
  13. Johnson, I. M., 1984, Spectral induced polarization parameters as determined through time-domain measurements, Geophysics, 49(11), 1993-2003, https://doi.org/10.1190/1.1441610
  14. Kemna, A., Binley, A., Ramirez, A., and Daily, W., 2000, Complex resistivity tomography for environmental applications, Chem. Eng. J., 77, 11-18, https://doi.org/10.1016/S1385-8947(99)00135-7
  15. Oldenburg, D. W., and Li, Y., 1994, Inversion of induced polarization data, Geophysics, 59, 1327-1341, https://doi.org/10.1190/1.1443692
  16. Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophysics, 43, 588-609, https://doi.org/10.1190/1.1440839
  17. Seigel, H. O., Vanhala, H., and Sheard, S. N., 1997, Some case histories of source discrimination using time-domain spectral IP, Geophysics, 62, 1394-1408, https://doi.org/10.1190/1.1444244
  18. Tarasov, A., and Titov, K., 2007, Relaxation time distribution from time-domain induced polarization measurements, Geophys. J. Int., 170, 31-43, https://doi.org/10.1111/j.1365-246X.2007.03376.x
  19. Tarasov, A., and Gurin, G., 2016, Spectral induced polarization of the ore zone of the gold deposit Sukhoi Log, in IP2016/4th International Workshop on Induced Polarization, Aarhus, Denmark.
  20. Titov, K., Komarov, V., Tarasov, V., and Levitski, A., 2002, Theoretical and experimental study of time-domain induced polarization in water saturated sands, J. Appl. Geophys., 50, 417-433, doi:10.1016/S0926-9851(02)00168-4
  21. Titov, K., Tarasov, A., Ilyin, Y., Seleznev, N., and Boyd, A., 2010, Relationships between induced polarization relaxation time and hydraulic properties of sandstone, Geophys. J. Int., 180, 1095-1106, https://doi.org/10.1111/j.1365-246X.2009.04465.x
  22. Vanhala, H., 1997, Mapping oil-contaminated sand and till with the spectral induced polarization (SIP) method, Geophys. Prosp., 45, 303-326, https://doi.org/10.1046/j.1365-2478.1997.00338.x
  23. Vanhala, H., and Peltoniemi, M., 1992, Spectral IP studies of Finnish ore prospects, Geophysics, 57, 1545-1555, https://doi.org/10.1190/1.1443222
  24. Van Voorhis, G. D., Nelson, P. H., and Drake, T. L., 1973, Complex resistivity spectra of porphyry copper mineralization, Geophysics, 38, 49-60, https://doi.org/10.1190/1.1440333
  25. Wong, J., 1979, An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores, Geophysics, 44, 1245-1265, https://doi.org/10.1190/1.1441005
  26. Xiang, J., Cheng, D., Schlindwein, F., and Jones, N., 2003, On the adequacy of identified Cole-Cole models, Comput. Geosci., 29, 647-654, doi:10.1016/S0098-3004(03)00032-3
  27. Yuval, and Oldenburg, D. W., 1997, Computation of Cole-Cole parameters from IP data, Geophysics, 62(2), 436-448, https://doi.org/10.1190/1.1444154