• Title/Summary/Keyword: 지표연료

Search Result 73, Processing Time 0.034 seconds

Estimation of Biomass of Pinus densiflora Stands Burnt Out by the 2005 Yangyang Forest Fire (2005년 양양산불 피해 소나무림의 연소량 추정)

  • Lee Byung-Doo;Chang Kwang-Min;Chung Joo-Sang;Lee Myung-Bo;Lee Si-Young;Kim Hyung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.2
    • /
    • pp.267-273
    • /
    • 2006
  • The biomass of Pinus densiflora stands burnt out by the 2005 Yangyang forest fire was estimated based on the grades of fire severity; light, moderate and heavy. In order to measure the post-fire ground biomass in kg/ha, the ground fuels including shrub layer were collected and weighted and the crown biomass was estimated using allometric regressions and leaf area index for dry weight of P. densiflora. The pre-fire biomass was assumed to be equal to that of non-damaged P. densiflora stands having the same characteristics. The results indicated that the forest fire burnt out fuels of stands; 3,693 kg/ha in the light-damaged, 8,724 kg/ha in the moderately-damaged, and 17,451 kg/ha in the heavily-damaged forest stands.

A Study on the Improvement of Sailing Efficiency Using Big Data of Ship Operation (선박 운항 빅데이터를 활용한 운항 효율 향상 방법 연구)

  • Shin, Jung-Hun;Shim, Jeong-Yeon;Park, Jin-Woo;Choi, Dae-Han;BYEON, Sang-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2017.04a
    • /
    • pp.244-244
    • /
    • 2017
  • Recently, A study is actively underway to apply to various industries, which are one of the major changes in the key drivers of the industry 4.0.. The data generated by the ship include various indicators such as the fuel volume, engine power, ground speed, speed, speed, main engine rpm, DFOC, SFOC, and FOC. This paper analyzes the sensitivity of the Gathering data and analyzes the impact energy efficiency of the vessel operation by analyzing the influence among each parameter, using the mathematical models, you create an surrogate model using the math model, comparative analysis of actual measurement data and predictive results were analyzed. Through the use of big data analysis technology, it is possible to identify the sensitivity between the energy efficiency related variables of the ship, The possibility of utilization of fuel efficiency indicators using of the surrogate model is identified.

  • PDF

Characteristics of NOx Emission in a Swirl Flow in Nonpremixed Turbulent Hydrogen Jet with Coaxial Air (수소 난류 확산화염에서의 선회류에 의한 배기배출물 특성)

  • Oh, Jeong-Seog;Yoon, Young-Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.275-282
    • /
    • 2010
  • The effect of swirl flow on NOx in a nonpremixed turbulent hydrogen jet with coaxial air was studied. The swirl vane angle was varied from $30^{\circ}$ to $90^{\circ}$. The fuel jet air velocity and coaxial air velocity were varied in an attached flame region as $u_F=85{\sim}160m/s$ and $u_A=7{\sim}14m/s$. The objective of the current study was to analyze the characteristics of nitrous oxide emission in a swirl flow and to propose a new parameter for EINOx scaling. The experimental results show that EINOx decreases with the swirl vane angle and increased with flame length. Further, EINOx scaling factors can be determined by considering the effective diameter ($d_{F,eff}$) in a far field concept. The EINOx increased in proportion to the flame residence time (${\sim}{\tau_R}^{1/2.8}$) and the global strain rate (${\sim}{S_G}^{1/2.8}$).

Design and Performance Verification of L1 Adaptive Flight Control Law Considering the Change of Center of Gravity for Unmanned Tailless Aircraft (무인 무미익 항공기의 무게중심 변화를 고려한 L1 적응제어 비행제어 법칙 설계 및 성능 검증)

  • Ko, Dong-hyeon;Kang, Ji-soo;Choi, Keeyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.114-121
    • /
    • 2019
  • Tailless aircraft have advantages of low visibility compared to conventional aircraft, but drawback of poor stability as well which makes designing controller difficult. The controller design is more difficult, especially when the center of gravity moves due to store release or fuel consumption during flight. In this paper, an L1 adaptive controller is proposed as a way to overcome these problems. The reliability and performance of the controllers were verified by non-linear simulations. RPV Flying Quality Design criteria were used for design criteria. Using the simulation, it is shown that the adaptive controller maintains stability of the unmanned aircraft for sudden large change in the inertial properties. It is also shown that the calculation burden can be reduced when it is used with the gain scheduling method.

Study of Satellite Image Analysis Techniques to Investigate Construction Environment Analysis of Resource Development in the Arctic Circle - Alberta, Canada (북극권 자원개발 건설환경 조사를 위한 위성 영상 분석 기법 연구 - 캐나다 앨버타주 대상)

  • Kim, Sewon;Kim, YoungSeok
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.549-559
    • /
    • 2021
  • The Arctic Circle's huge amounts of fossil fuels and mineral resources are being developed and subjected to active construction projects. Global efforts are continuing to actively respond to climate change, but the dependence on fossil fuels remains high. This study reports a preliminary survey conducted in Alberta, Canada, where oil sand resources are actively developed. A land cover map was prepared using satellite imagery to reduce the cost and time of surveying a wide area. Results likely useful to resource development projects such as ground surface temperature and snow cover distribution were derived by using the obtained image classification results. It is expected that the results of the present research and analysis will be used to establish strategies for the successful promotion and operation of projects to develop resources in the Arctic.

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach (연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구)

  • Kang, Seok Ho;Lee, Chang-Mi;Lim, Dong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.242-248
    • /
    • 2016
  • The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.

An Introduction for Optimum Route Assessment System (최적 항로 평가 시스템의 개발 및 적용에 대한 소개)

  • Park, Gun-Il;Lee, Jin-Ho;Kim, Mun-Sung;Bang, Chang-Seon;Choi, Jae-Woong;Choi, Kyong-Soon
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.189-192
    • /
    • 2006
  • For the safety and efficiency of voyage, the demand for decision support system in route planning has been increasing with the advance of information technology and the increase of oil price. According to the needs, the authors developed an optimum route assessment system. The system assists an navigator to make an optimum route plan with respect to sailing time and fuel consumption using weather forecast data. Also, the system provides the quantitative estimation for the various safety indexes including parametric roll and etc. Using these functions, a navigator is able to design the safe and efficient voyage plan. The effectiveness of system were verified by the operation during actual voyages and the simulation studies.

  • PDF

The Study on Economic Evaluation of Anti Fouling Coatings based on Ship's Speed Loss in Accordance with ISO 19030 Standard (ISO 19030에 따른 선박의 속력 손실을 고려한 방오도료의 경제성 평가)

  • Kim, Jae Hyeok;Kim, Yong Woon;Lee, Dong Kwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.124-132
    • /
    • 2020
  • The purpose of this paper is to establish the basic procedure and method for selection of preferred anti-fouling paint considering economic analysis according to ship's speed loss based on ISO 19030 that has been published in 2016 to prescribe practical methods for measuring changes in ship specific hull and propeller performance. In this study, six (6) anti-fouling paint products have been assumed for alternatives with each target maximum average speed loss and carried out comparison of the alternatives and sensitivity analysis in assumed conditions for selection of the preferred alternative.

Emission Rates Estimation by Vehicle Type in Seoul Using the Vehicle Inspection Data (차량 검사 데이터를 활용한 서울시 자동차 유형별 배출 가스량 원단위 산정)

  • Lee, Hyosun;Han, Yohee;Park, Shin Hyoung;Hwang, Ho Hyun;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.177-191
    • /
    • 2021
  • One of the major causes of serious air pollution worldwide is emissions from road transportation. A number of countries are working to reduce vehicle emissions, and the Seoul Metropolitan Government is also implementing active policies to reduce emissions by setting a target of 40% by 2030. Implementing these policies requires the introduction of practical indicators. Most of the domestic emissions are calculated by the emission coefficient, a function of speed at the National Institute of Environmental Research under the Ministry of Environment, but the dynamic variable speed is limited to being used as an indicator of the number of eco-friendly vehicles. Therefore, this study calculated the emission rates in Seoul using the vehicle registration data of Seoul and the vehicle inspection data from the Korea Transportation Safety Authority. The tendency of emissions was determined according to key variables such as vehicle type, fuel and mileage. Emissions were based on carbon monoxide, hydrocarbons, nitrogen oxides and particulate matter measured by vehicle inspection from the Korea Transportation Safety Authority. As a result, the emission rates showed a significant trend according to the model year and mileage. This can be used as a policy indicator to preferentially switch commercial vehicles with old model years and long mileage when switching eco-friendly vehicles in Seoul.

The Control System of Wood Pellet Boiler Based on Home Networks (홈 네트워크 기반의 펠릿 활용 난방 보일러 제어시스템)

  • Lee, Sang-Hoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • This paper presents the implementation of a control system of pellet boiler using wood pellet as carbon neutral material. The system also has the additional features to provide remote controlling and monitoring based on home networking technology through either public switched telephone networks or mobile communication networks. It consists of three kinds of sub-modules; a main controller provides basic and additional features such as a setting of temperature, a supplying of wood pellet, a controlling of ignition and fire-power, and a removing of soot. The second is temperature controller of individual rooms which is connected to the main controller through RS-485 links. And interface modules with PSTN and mobile networks can support remote controlling and monitoring the functions. The test results under the heating area of $172m^2$ show a thermal efficiency of 93.6%, a heating power of 20,640kcal/hr, and a fuel consumption of 5.54kg/hr. These results are superior to those of the conventional pellet boilers. In order to obtain the such high performance, we newly applied a 3-step ignition flow, a flame detection by $C_dS$ sensor, and a fire-power control by fine controlling of shutter to our pellet boiler.