• Title/Summary/Keyword: 지진격리

Search Result 97, Processing Time 0.022 seconds

Nonlinear Soil-Structure Interaction Analysis of a Seismically Isolated Nuclear Power Plant Structure using the Boundary Reaction Method (경계반력법을 이용한 지진격리 원전구조물의 비선형 지반-구조물 상호작용 해석)

  • Lee, Eun-Haeng;Kim, Jae-Min;Lee, Sang-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • This paper presents a detailed procedure for a nonlinear soil-structure interaction of a seismically isolated NPP(Nuclear Power Plant) structure using the boundary reaction method (BRM). The BRM offers a two-step method as follows: (1) the calculation of boundary reaction forces in the frequency domain on an interface of linear and nonlinear regions, (2) solving the wave radiation problem subjected to the boundary reaction forces in the time domain. For the purpose of calculating the boundary reaction forces at the base of the isolator, the KIESSI-3D program is employed in this study to solve soil-foundation interaction problem subjected to vertically incident seismic waves. Wave radiation analysis is also employed, in which the nonlinear structure and the linear soil region are modeled by finite elements and energy absorbing elements on the outer model boundary using a general purpose nonlinear FE program. In this study, the MIDAS/Civil program is employed for modeling the wave radiation problem. In order to absorb the outgoing elastic waves to the unbounded soil region, spring and viscous-damper elements are used at the outer FE boundary. The BRM technique utilizing KIESSI-3D and MIDAS/Civil programs is verified using a linear soil-structure analysis problem. Finally the method is applied to nonlinear seismic analysis of a base-isolated NPP structure. The results show that BRM can effectively be applied to nonlinear soil-structure interaction problems.

Development of Computational Tools for Seismic Design of Architectural Components in Negative Pressure Isolation Wards (음압격리병동의 건축 비구조요소 내진설계를 위한 전산도구 개발)

  • Chu, Yu Rim;Kim, Tae Jin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2022
  • Recently, an unprecedented emerging infectious disease has rapidly spread, causing a global shortage of wards. Although various temporary beds have appeared, the supply of wards specializing in infectious diseases is required. Negative pressure isolation wards should maintain their function even after an earthquake. However, the current seismic design standards do not guarantee the negative pressure isolation wards' operational (OP) performance level. For this reason, some are not included in the design target even though they are non-structural elements that require seismic design. Also, the details of non-structural elements are usually determined during the construction phase. It is often necessary to complete the stability review and reinforcement design for non-structural elements within a short period. Against this background, enhanced performance objectives were set to guarantee the OP non-structural performance level, and a computerized tool was developed to quickly perform the seismic design of non-structural elements in the negative pressure isolation wards. This study created a spreadsheet-based computer tool that reflects the components, installation spacing, and design procedures of non-structural elements. Seismic performance review and design of the example non-structural elements were conducted using the computerized tool. The strength of some components was not sufficient, and it was reinforced. As a result, the time and effort required for strength evaluation, displacement evaluation, and reinforcement design were reduced through computerized tools.

Parametric Study of Asymmetric Base-Isolation Coupling Control System for Vibration Control of Adjacent Twin Buildings (쌍둥이 인접구조물의 진동 제어를 위한 비대칭 지진격리 연결 제어시스템의 매개변수연구)

  • Kim, David;Park, Wonsuk;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.3
    • /
    • pp.45-51
    • /
    • 2022
  • This paper focuses on a recently proposed asymmetric base-isolation coupling control system (ABiCS) for the vibration control of adjacent twin buildings. The ABiCS consists of inter-story diagonal dampers, a connecting damper between the two buildings, and a seismic isolation device at the base floor of one building. To investigate the control characteristics of ABiCS, a parametric study was performed by numerically simulating the 20-story twin buildings. In the parametric study, the control capacities of the inter-story diagonal dampers, connecting damper, and seismic isolation device were considered as varying parameters. The parametric study results indicate that the connecting damper between the two buildings reduces the responses of both buildings only at optimal or near-optimal capacity. In addition, adjusting the stiffness of the base isolation is found to be the most effective method for improving seismic performance and achieving cost-effectiveness. Accordingly, we presented a scenario-based performance improvement approach in which reducing the stiffness of the base isolation device could be an effective technique to improve the seismic performance of both buildings. However, note that checking the maximum allowable displacement of the base isolation device is essential.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.

Improvement of the Performance Based Seismic Design Method of Cable Supported Bridges with Resilient-Friction Base Isolation Systems (I- Analysis of Field Testing of Cable Supported Bridge) (마찰복원형 지진격리장치가 설치된 케이블교량의 성능 기반 내진설계법 개선(I-실 교량 실험 결과 분석))

  • Gil, Heungbae;Park, Sun Kyu;Han, Kyoung Bong;Yoon, Wan Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.157-167
    • /
    • 2020
  • In this study, a field bridge test was conducted to find the dynamic properties of cable supported bridges with resilient-friction base isolation systems (R-FBI). Various ambient vibration tests were performed to estimate dynamic properties of a test bridge using trucks in a non-transportation state before opening of the bridge and by ordinary traffic loadings about one year later after opening of the bridge. The dynamic properties found from the results of the tests were compared with an analysis model. From the result of the ambient vibration tests of the cable supported bridge with R-FBI, it was confirmed that the dynamic properties were sensitive to the stiffness of the R-FBI in the bridge, and the seismic analysis model of the test bridge using the effective stiffness of the R-FBI was insufficient for reflecting the dynamic behavior of the bridge. In the case of cable supported bridges, the seismic design must follow the "Korean Highway Bridge Design Code (Limit State Design) for Cable supported bridges." Therefore, in order to reflect the actual behavior characteristics of the R-FBI installed on cable-supported bridges, an improved seismic design procedure should be proposed.

Floor Response Spectrum Analysis of a Base-isolated Nuclear Power Plant (면진원전의 층응답스펙트럼 해석)

  • Jung, Jae-Wook;Lee, Sangmin;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.355-362
    • /
    • 2016
  • In order to secure the stability against strong earthquakes, isolation devices on the existing nuclear power plant have been introduced. By applying the isolation device on structures, it is possible to isolate structures from the ground motion. Therefore, the natural frequencies of the structures become longer, and the responses of the structures due to the ground motion decrease. Especially, when designing the nuclear power plant, it is important to ensure the safety of internal devices as well as the nuclear power plant itself. The floor response spectrum is commonly used in designing the internal devices. In this research, floor response spectrum is evaluated and the effect of second hardening behavior is investigated by performing earthquake analysis.

Seismic performance evaluation using capacity spectrum method of bridge retrofitted with isolators (능력스펙트럼을 이용한 지진격리교량의 내진성능평가)

  • 김민지;한경봉;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.129-134
    • /
    • 2002
  • The seismic performance evaluation and retrofit process are very important for old bridge. If the result is not appropriate, a retrofit process requires. Among the various retrofit methods, this paper selects a seismic isolator and evaluates a seismic performance of bridge. In case of applied seismic isolators to bridge, it proved that seismic capacity is increased by isolators A period of bridge is increased, and a seismic response is decreased. A method of evaluation is capacity spectrum method. By means of a graphical procedure, capacity spectrum estimates a performance level of structure by comparing the capacity of structure with the demand of earthquake ground motion on the structure. The objective of this study is to compare a seismic performance of a non-seismic designed bridge and seismic isolated bridge and to verify a effect of seismic isolator

  • PDF

An Experimental Study on the Characteristics of Steel Hysteretic Dampers with Pin-type Elements (실험을 통한 핀타입(pin-type) 강재이력댐퍼의 거동특성연구)

  • 강형택;김인배;이일근;정진혁
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.257-262
    • /
    • 2003
  • Base isolation bearings are known as an effective system to Protect bridges from the earthquake damage. There are many types of base isolation bearings in the market. Among them, steel hysteretic damper, made of mild steel and one of the oldest ones, has some good features. Since steel hysteretic damper is made of steel and has simple structure, it is cheeper and easier to maintain than other types. Despite the advantages, steel hysteretic damper with pin-type elements has no application in Korea. The steel hysteretic damper with pin-type elements are tested to examin the basic characteristics and to evaluate antiseismic performance. In this paper, the results of the test are presented.

  • PDF

LRB-based Hybrid Base Isolation Systems for Seismically Excited Cable-Stayed Bridges (지진하중을 받는 사장교를 위한 LRB-기반 복합 기초격리 시스템)

  • 정형조;박규식;이헌재;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.527-534
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation systems employing additional active/semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal hydraulic actuators (HAs) and ideal magnetorheological dampers (MRDs) are considered as additional active and semiactive control devices, respectively. Numerical simulation results show that all the hybrid base isolation systems are effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base isolation system employing semiactive MRBs is robust to the stiffness uncertainty of the structure, while the hybrid system with active HAs is not. Therefore, the LRB-based hybrid base isolation system employing MRDs could be more appropriate in real applications for full-scale civil infrastructures.

  • PDF

Pseudo Dynamic Test of the Seismically Isolated RC Piers (지진격리설계된 RC교각의 유사동적 실험)

  • Kim Young-Jin;Kwahk Im-Jong;Cho Chang-Beck;Kwark Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.25-28
    • /
    • 2004
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. In this experimental study, the effectiveness of base isolation bearings was discussed for the seismic retrofit of the highway bridges. Four real scale RC pier specimens were constructed for the test. These RC piers didn't have seismic details. Except for one RC pier for the pilot test, three types of bearings such as Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to the other RC piers respectively. The RC pier with Pot bearing means current state of the prototype bridge that is not retrofitted seismically. And two RC piers with RB or LRB mean assumed states of the prototype bridge that are retrofitted seismically. To simulate dynamic behavior of these RC piers under earthquake loads, Pseudo-dynamic test method was used.

  • PDF