• Title/Summary/Keyword: 지지 성능

Search Result 803, Processing Time 0.032 seconds

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part II. Reverse Electrodialysis (가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part II. 역 전기투석)

  • Song, Hyun-Bee;Moon, Ha-Neul;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.441-448
    • /
    • 2017
  • In this study, the effects of membrane characteristics on the power generation performance in reverse electrodialysis (RED) have been investigated with pore-filled ion-exchange membranes (PFIEMs) prepared by employing a porous polyethylene substrate and the mixtures of three cross-linking agents. As a result, it was confirmed through the correlation analyses that the cross-linking degree and free volume of the PFIEMs were effectively controlled by mixing the cross-linking agents having different molecular sizes, influencing complexly the electrochemical characteristics of the membranes and the power generation performance in RED. In particular, the pore-filled cation-exchange membranes at the optimum cross-linking conditions exhibited the power generation performance superior to that of the commercial membranes and the pore-filled anion-exchange membranes also showed the excellent performance close to that of the commercial membrane.

Development of Lightweight Piezo-composite Curved Actuator (곡면형 압전 복합재료 작동기 LIPCA 개발)

  • Park, Ki-Hoon;Yoon, Kwang-Joon;Park, Hoon-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.94-100
    • /
    • 2002
  • This paper is concerned with the development, and performance test of LIPCA (Lightweight Piezo-composite Curved Actuator) that is lighter than other conventional piezo-composite type actuators. LIPCA is composed of top fiber composite layers with a high modulus and low CTE (Coefficient of Thermal Expansion), a middle PZT cermaic wafer, and base layers with a high modulus and high CTE. The performance of each actuator was evaluated using an actuator test system consisting of an actuator supporting jig, a high voltage actuating power supplier, and a non-contact laser measuring system. The simply supported condition actuator was excited by the power supplier with 1.0Hz cycle and up to $100\sim400V_{pp}$. The displacement at the center point of actuator was measured with non-contact laser displacement measuring system, It has been shown that the LIPCA-C2 can 34% decrease in mass and 13% increase in displacement compared to THUNDER.

Effect of Gas Diffusion Layer Property on PEMFC Performance (기체확산층 물성이 고분자전해질 연료전지 성능에 미치는 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.568-574
    • /
    • 2020
  • Gas diffusion layer (GDL) is one of the main components of PEMFC as a pathway of reactants from a flow field to an electrode, water transport in reverse direction, heat management and structural support of MEA. In this study, the effect of GDL on fuel cell performance was investigated for commercial products such as 39BC and JNT30-A3. Polarization curve measurements were performed at different flow rates and relative humidity conditions using 25 ㎠ unit cell. The parameters on operating conditions were calculated using an empirical equation. The electrical resistance increased as the GDL PTFE content increased. The crack of microporous layer had influence on the concentration loss as water pathway. In addition, the ohmic resistance increased as the relative humidity decreased, but decreased as the current density increased due to water formation. Curve fitting analysis using the empirical equation model was applied to identify the tendency of performance parameters on operating conditions for the gas diffusion layer.

Seismic Performance of a Knee-Braced Moment Resisting Frame (Knee brace가 설치된 모멘트저항골조의 내진성능)

  • Choi, Hyun-Hoon;Kim, Jin-Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.171-180
    • /
    • 2005
  • In this study the seismic performance of a three-story knee-braced moment-resisting frame (KBMRF), which is typically employed to support pipelines for oil or gas, was investigated. Nonlinear static pushover analyses were performed first to observe the force-displacement relationship of KBMRF under increasing seismic load. The results show that, when the maximum inter-story drift reached 1.5% of the story height, the main structural members, such as beams and columns, still remained elastic. Then nonlinear dynamic time-history analyses were carried out using eight earthquake ground motion time-histories scaled to at the design spectrum of UBC-97. It turned out that the maximum inter-story drift was smaller than the drift limit of 1.5 % of the structure height, and that the columns remained elastic. Based on these analytical results, it can be concluded that the seismic performance of the structure satisfies all the requirements regulated in the seismic code.

Strain-Based Shear Strength Model for fiber Reinforced Concrete Beams (섬유보강 콘크리트 보를 위한 변형 기반 전단강도모델)

  • Choi Kyoung-Kyu;Park Hong-Gun;Wight James K.
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.911-922
    • /
    • 2005
  • A theoretical study was performed to investigate the behavioral chracteristics and shear strength of fiber reinforced concrete slender beams. In the fiber reinforced concrete beam, the shear force applied to a cross section of the beam was resisted by both compressive zone and tensile zone. The shear capacity of the compressive zone was defined addressing the interaction with the normal stresses developed by the flexural moment in the cross section. The shear capacity of the tensile zone was defined addressing the post-cracking tensile strength of fiber reinforced concrete. Since the magnitude and distribution of the normal stresses vary according to the flexural deformation of the beam, the shear capacity of the beam was defined as a function of the flexural deformation of the beam. The shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed method was developed as a unified shear design method which is applicable to conventional reinforced concrete as well as fiber reinforced concrete.

Structural Design of Coupled RC Structural Wall Considering Plastic Behavior (소성거동을 고려한 병렬 RC 구조벽체시스템의 설계)

  • Yu, Seung-Yoon;Eom, Tae-Sung;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2017
  • Reinforced concrete(RC) structural walls are major lateral load-resisting structural member in building structures. Generally these RC structural walls are coupled with each other by the coupling beams and slabs, and therefore they behave as RC coupled structural wall system. In the design of these coupled structural wall systems, member forces are calculated using elastic structural analysis. These elastic analysis methodologies for the design of coupled structural wall system was not reasonable because it can not consider their ultimate behavior and assure economic feasibility. Performance based design and moment redistribution method to solve these problems is regarded as a reasonable alternative design method for RC coupled structural wall system. However, it is not verified under various design parameters. In this study, nonlinear analysis of RC coupled structural wall system was performed according to various design parameters such as reinforcement ratio, ultimate concrete strain and wall height. Based on analysis results, design considerations for coupled RC structural wall system was proposed.

Text Classification based on a Feature Projection Technique with Robustness from Noisy Data (오류 데이타에 강한 자질 투영법 기반의 문서 범주화 기법)

  • 고영중;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.498-504
    • /
    • 2004
  • This paper presents a new text classifier based on a feature projection technique. In feature projections, training documents are represented as the projections on each feature. A classification process is based on individual feature projections. The final classification is determined by the sum from the individual classification of each feature. In our experiments, the proposed classifier showed high performance. Especially, it have fast execution speed and robustness with noisy data in comparison with k-NN and SVM, which are among the state-of-art text classifiers. Since the algorithm of the proposed classifier is very simple, its implementation and training process can be done very simply. Therefore, it can be a useful classifier in text classification tasks which need fast execution speed, robustness, and high performance.

Performance Evaluation of Discovery and Message Transmission of DDS (Data Distribution Service) Security (보안 DDS(Data Distribution Service)의 디스커버리 및 메시지 전송 성능 분석)

  • Im, Jinyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.5
    • /
    • pp.701-708
    • /
    • 2021
  • In this paper, I investigate the performances of the discovery and the message transmission of the DDS (Data Distribution Service) included the security function. The DDS serves the communication protocol, a publication- subscription method, for the real-time communication in the distributed system. The publication-subscription method is used in the various area in terms of defence, traffic and medical due to the strength such as a performance, scailability and availability. Nowadays, many communication standard has included and re-defined the security function to prepare from dramatically increased a threat of the security, the DDS also publishes the standard included the security function. But it had been not researched that the effect of increased a overhead for legacy systems due to the using of the security DDS function. The experimental results show that the comparative performance of legacy DDS and security DDS in terms of the discovery and the message transmission.

Study of Risky Driving Decision Device using DGPS/RTK (DGPS/RTK를 이용한 위험운전 판단장치 성능검증에 관한 연구)

  • Oh, JuTaek;Lee, SangYong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.303-311
    • /
    • 2010
  • There have been various forms of systems such as a digital speedometer or a black box etc. to meet the social requirement for reducing traffic accidents and safe driving. However that systems are based on after-accident vehicle data, there is limit to prevent the accident before. So in our previous research, by storing, analyzing the Vehicle-dynamic information coming from driver's behavior, we are developing the decision-device which could provide driver with Alerting-Information in real-time to enhance the driver's safety drive. but the performance valuation is not yet executed. Finally, this study developed positional recognition system by using the DGPS for pre-developed risky driving decision device. The result of test analyzed with the same that the aggregated vehicle dynamics data in DGPS and dangerous risky driving decision device. If the performance of risky driving decision device is verified by precisely positional recognition system, the risky driving management of vehicle would be effected.

Performance Assessment of 3D Printed Mechanically Stabilized Earth Retaining Wall Backfilled with Recycling Soil (3D 프린팅 기술 기반 보강토 옹벽 순환토사 적용 뒤채움재의 성능 평가)

  • Kim, Jae-Hwan;Oh, Jeongho
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.81-93
    • /
    • 2024
  • In Korea, numerous large-scale infrastructure construction projects and housing site developments are being undertaken. However, due to limited land availability, sourcing high-quality backfill materials that meet the standards for railroad and road embankment compaction and mechanically stabilized earth (MSE) retaining wall construction poses significant challenges. Concurrently, there has been an increase in structural failures of many MSE retaining walls, attributed primarily to reduced bearing capacity and impaired drainage performance, resulting from inadequate backfill compaction. This study aimed to analyze the structural performance and safety of an MSE retaining wall using recycled soil as backfill. We conducted small-scale model tests utilizing 3D printing technology combined with two-dimensional numerical analysis. The study quantitatively evaluated the MSE retaining wall's performance concerning the recycled soil mixing ratio and reinforcement installation methods. Furthermore, the utility of 3D printing was confirmed through the production of an experimental wall designed to facilitate easy reinforcement attachment, mirroring the conditions of actual MSE retaining wall construction.