• Title/Summary/Keyword: 지지세포

Search Result 226, Processing Time 0.028 seconds

Design and Fabrication of Nasal-Implant-Shaped Scaffold and Regeneration of Nasal Cartilage Tissue for Rhinoplasty (코 성형을 위한 코 보형물 형태의 인공지지체 설계 및 제작과 코 연골조직의 재생)

  • Jung, Jin-Woo;Jang, Jin-Ah;Shim, Jin-Hyung;Kim, Sung-Won;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1111-1117
    • /
    • 2012
  • Implants for rhinoplasty should ideally be biocompatible and possess long-term stability after implantation. Silicone implants are most widely used for rhinoplasty. However, these implants suffer from problems related to high extrusion and infection rates. To minimize these complications, we propose a novel augmentation rhinoplasty technique using tissue engineering. To demonstrate its feasibility, a nasal-implant-shaped scaffold was designed using commercialized CAD software and fabricated using a Multi-head Deposition System, which is a solid freeform fabrication system that dispenses material. In vitro cell proliferation and chondrogenic differentiation tests were carried out using nasal septal chondrocytes.

인공피부 개발을 위한 생채 적합성 지지체에 관한 연구

  • Kim, Chang-Hwan;Kim, Cheon-Ho;Park, Hyeon-Suk;Gang, Hyeon-Ju;Han, Eun-Suk;Kim, Yun-Yeong;Choe, Yeong-Ju;Lee, Su-Hyeon;Choe, Tae-Bu;Son, Yeong-Suk
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.429-432
    • /
    • 2000
  • Chitosan scaffold is widely applied to drug delivery and tissue engineering. We have developed chitosan scaffolds, with various pore size, by differing freezing temperature and duration of ultraviolet (UV) irradiation, for reconstructing skin equivalent. Chitosan scaffold was coated with type I collagen, fibronectin and basic fibroblast growth factor (bFGF) in various combinations and concentrations, to evaluate the effect of extracellular matrix (ECM) and bFGF on cell adhesion, growth and differentiation of dermal fibroblasts. Human dermal fibroblasts, isolated from newborn foreskin and passaged between 3 and 5, were seeded on the top of scaffolds and cultivated for 2 weeks. We examined the morphology and the secretion of ECM of fibroblasts using scanning electron microsopy (SEM) and histochemistry. A stellate morphology of fibroblasts were seen in all groups. The scaffold coated with either type I collagen and bFGF or type I collagen and fibronectin, however, showed the best condtion of dermal fibroblasts, in that the highest cell number and ECM secretion were seen. On the contrary, scaffolds coated with all three factors, type I collagen, bFGF and fibronectin, showed lower number of cells and ECM secretion than scaffolds with two factors. There was a tendency of dose-dependence in all three factors for fibroblast growth and ECM secretion. In conclusion, we may suggest that chitosan scaffold coated with either type I collagen/bFGF or type I collagen/fibronectin could provide more favorable environment for the growth and differentiation of dermal fibroblasts.

  • PDF

Differentiation of Human Embryonic Stem Cells into Germ Cell and Culture Condition for Single Embryonic Stem Cells Dissociated by Enzyme (인간 배아줄기세포의 생식세포로의 분화 및 효소에 의해 분리된 단일줄기세포 배양조건)

  • Chi, Hee-Jun;Choi, Soon-Young;Chung, Da-Yeon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.1
    • /
    • pp.13-23
    • /
    • 2010
  • Objective: The present study was carried out to induce differentiation of human embryonic stem cells (hESCs) into germ cells and to establish a culture condition for single hESCs dissociated by enzyme. Methods: Embryonic body (EB) was formed by hanging drop culture for 3 days from hESCs colony. The EBs were cultured in the medium supplemented with retionic acid (RA) or/and bone morphogenetic protein-4 (BMP4) for 14 days to differentiate into germ cells. Germ cell specific markers, c-kit and VASA were used for immunohistochemistry of EB. Human ESCs colonies were dissociated into single cells by Collagenase, Tryple and Accutase, and then colony formation rate of the single cells was examined. Rho-associated kinase inhibitor (ROCK inhibitor, Y27632) was added into the culture medium of single cells to reduce the apoptotic damage during the dissociation. Results: Single cells dissociated with Tryple or Accutase showed higher colony formation rates compared to the cells dissociated with Collagenase. Seeding of $5{\times}10^3$ cells/well (4 well dish) was efficient to obtain high colony formation rate compared to other concentrations of seeding cell. Addition of Y27632 significantly increased the colony formation rate of the single cells dissociated by Tryple. Immunohistochemistry of EB with c-kit and VASA markers showed a weak fluorescence signals compared to the signals from the testicular tissue. Conclusion: Dissociation with Tryple was useful to obtain healthy single cells and addition of Y27632 was beneficial for survival and colony formation of the single cells. Unlike other studies, we just observed a dim fluorescence staining of the germ cell markers, probably caused by the short-term culture for the differentiation of EB compared to other studies.

HIDE, a Testis Specific Deubiquitinating Enzyme, Interacts with HSP90 (고환 특이적으로 발현되는 탈유비퀴틴효소 HIDE와 HSP90의 상호작용)

  • Seong, Minu;Kim, Myung-Sun;Kim, Yong-Soo;Lee, Sook-Hwan;Lee, Hey-Jin;Cha, Kwang Yul;Baek, Kwang-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.231-242
    • /
    • 2005
  • 연구목적: 본 연구는 아직 그 기능이 파악되지 않은 탈유비퀴틴효소 중 하나인 HIDE에 대한 기본적인 생화학적 특징과 고환에서의 발현 양상을 파악하고 있다. 연구재료 및 방법: 인간의 HIDE 유전자를 클로닝하여 효소활성이 있는지 세포 외 실험을 통해 확인하였고, 아미노산 서열을 분석하여 진화상 보존된 부분을 찾아 그 기능을 파악한 다음 HSP90과의 상호작용을 공동면역침전반응으로 확인하였다. HIDE의 조직별 발현양상을 파악하기 위해서 인간과 쥐의 RNA 블롯과 쥐의 단백질 블롯을 이용하여 각각 노던 블롯팅과 웨스턴 블롯팅을 수행하여 고환에서 많이 발현된다는 것을 알았고 이 사실을 바탕으로 쥐의 고환을 절개하여 면역조직화학반응으로써 고환 내의 HIDE 단백질의 발현양상을 파악하였다. 결 과: HIDE는 세포 외에서 유비퀴틴 잔기를 제거하는 탈유비퀴틴 활성이 있으나 세포 내에서 전체적인 유비퀴틴 복합체를 줄여주는 효과는 없었다. HIDE는 HSP90이라는 분자 샤페론과 상호작용한다. HIDE의 전사체는 고환에서 가장 많이 발현되며 다른 조직에서도 소량 발현된다. HIDE의 단백질은 웨스턴 블롯상에서 고환에서만 확인되었다. 고환 내에서의 HIDE의 발현양상은 왕성한 감수분열을 하는 정모세포에서 높았으며 지지세포나 정조세포에는 발현되지 않았다. 결 론: HIDE는 분자 샤페론 HSP90과 상호작용하며 고환 내의 감수분열 중인 세포에서 많이 발현되는 것으로 보아 감수분열이나 정자형성에 관여하는 것으로 보인다.

Regeneration of Intervertebral Disc Using Gellan Sponge Loading PLGA Microspheres (PLGA 미립구가 함유된 젤란검 스폰지를 이용한 추간판 조직 재생)

  • Park, Hyunwoo;Kim, Hye Yun;Kwon, Soon Yong;Khang, Gilson;Kim, Yong-Sik
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.144-150
    • /
    • 2015
  • Gellan gum as a natural polysaccharide has good heat resistance, acid resistance and enzymes resistance. However, one of the drawbacks of gellan gum might be the lower mechanical strength. In this work, gellan gum scaffolds were mixed with poly(lactic-co-glycolic acid) (PLGA) microsphere in order to improve mechanical properties. The gellan gum scaffolds with various contents of PLGA microsphere were prepared for the regeneration of disc tissues. To evaluate the mechanical strength of hybrid structure of gellan gum and PLGA microsphere, compression strength of the fabricated scaffolds was measured. MTT analysis, SEM observation, histological evaluation and RT-PCR were performed to confirm the effect on the cell growth and extracellular matrix secretion. As a result, it showed the best cell proliferation and extracellular matrix secretion in gellan gum sponge containing 50% PLGA microspheres. In conclusion, this study confirmed that the hybrid structure of gellan gum and PLGA microspheres was found suitable in regeneration of the intervertebral disc.

Three-Dimensional Printed 3D Structure for Tissue Engineering (3 차원 프린팅 기술로 제작된 조직공학용 3 차원 구조체)

  • Park, Jeong Hun;Jang, Jinah;Cho, Dong-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.817-829
    • /
    • 2014
  • One of the main issues in tissue engineering has been the development of a three-dimensional (3D) structure, which is a temporary template that provides the structural support and microenvironment necessary for cell growth and differentiation into the target tissue. In tissue engineering, various biomaterials and their processing techniques have been applied for the fabrication of 3D structures. In particular, 3D printing technology enables the fabrication of a complex inner/outer architecture using a computer-aided design and manufacturing (CAD/CAM) system, and it has been widely applied to the fabrication of 3D structures for tissue engineering. Novel cell/organ printing techniques based on 3D printing have also been developed for the fabrication of a biomimetic structure with various cells and biomaterials. This paper presents a comprehensive review of the functional scaffold and cell-printed structures based on 3D printing technology and the application of this technology to various kinds of tissues regeneration.

Reduction of Inflammatory Reaction of PLGA Using Fibrin; in vivo Study (PLGA의 염증완화에 대한 피브린의 효과 ; In vivo 연구)

  • Kim, Su-Jin;Hong, Hyun-Hye;Kim, Soon-Hee;Kim, Hye-Lin;Kim, Se-Ho;Khang, Gil-Son
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.63-68
    • /
    • 2010
  • In this study, we evaluated the effect of fibrin, a natural material, on the local inflammatory reaction of PLGA in vivo. PLGA degradation products can decrease the pH in the surrounding tissue, causing local inflammatory reaction. To solve this problem, fibrin/PLGA scaffolds were implanted in 5-week-old Wister rats. To evaluate the influence of fibrin content on inflammatory cytokine expression induced by PLGA, RT-PCR analysis was used. Fibrous wall thickness and macrophage infiltration were evaluated by H&E and ED-1 immunohistochemical staining, respectively. In this study, we showed that fibrin/PLGA scaffolds reduced inflammatory reaction as compared to PLGA scaffold. We concluded that fibrin could reduce inflammatory response of PLGA.

Analysis of Global Gene Expression Profile of Human Adipose Tissue Derived Mesenchymal Stem Cell Cultured with Cancer Cells (암세포주와 공동 배양된 인간 지방 조직 유래 중간엽 줄기 세포의 유전자 발현 분석)

  • Kim, Jong-Myung;Yu, Ji-Min;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.631-646
    • /
    • 2011
  • Mesenchymal stem cells (MSC) are multipotent and can be isolated from diverse human tissues including bone marrow, fat, placenta, dental pulp, synovium, tonsil, and the thymus. They function as regulators of tissue homeostasis. Because of their various advantages such as plasticity, easy isolation and manipulation, chemotaxis to cancer, and immune regulatory function, MSCs have been considered to be a potent cell source for regenerative medicine, cancer treatment and other cell based therapy such as GVHD. However, relating to its supportive feature for surrounding cell and tissue, it has been frequently reported that MSCs accelerate tumor growth by modulating cancer microenvironment through promoting angiogenesis, secreting growth factors, and suppressing anti-tumorigenic immune reaction. Thus, clinical application of MSCs has been limited. To understand the underlying mechanism which modulates MSCs to function as tumor supportive cells, we co-cultured human adipose tissue derived mesenchymal stem cells (ASC) with cancer cell lines H460 and U87MG. Then, expression data of ASCs co-cultured with cancer cells and cultured alone were obtained via microarray. Comparative expression analysis was carried out using DAVID (Database for Annotation, Visualization and Integrated Discovery) and PANTHER (Protein ANalysis THrough Evolutionary Relationships) in divers aspects including biological process, molecular function, cellular component, protein class, disease, tissue expression, and signal pathway. We found that cancer cells alter the expression profile of MSCs to cancer associated fibroblast like cells by modulating its energy metabolism, stemness, cell structure components, and paracrine effect in a variety of levels. These findings will improve the clinical efficacy and safety of MSCs based cell therapy.

Effect of Di-(2-ethylhexyl)phthalate(DBHP) on Spermatogenesis in Rat Testes (흰쥐 정자형성과정에 미치는 Di-(2-ethylhexyl)phthalate의 영향)

  • 김완종;길영천;이종화;신길상
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.285-292
    • /
    • 1999
  • Di-(2-ethylhexyl) phthalate (DEHP) is a plasticizer known as one of endocrine disruptors. The present study was carried out to investigate the alterations of function and ultrastructure in rat testes after oral intubation of DEHP in dosages of 1g/kg/day, 2 g/kg/day or 3 g/kg/day in 0.5 ml of corn oil for 15 days. DEHP reduced the growth of body and testes, inhibited apermatogenesis and induced structural changes on various cell types of the rat testis. Leydig cells, Sertoli cells and the developing germ cells seemed to be impaired their differentiations in terms of the structural changes of cell organelles. The increase of heterochromatin in amount were common features in all 3 cell types. In addition, the Leydig cells were characterized by the swelling of smooth endoplasmic reticulum and perinuclear space, the increases in number and size of Iysosomes. The Sertoli cells became irregular in nuclear envelope and the number of Iysosomes and vacuoles seemed to be increased. There were some indications of necrosis of the germ cells, such as vacuolized nucleus and segregated nucleolus. And also, DEHP lowered the level of testosterone in experimental rat serum. DEHP suppressed apermatogenesis decreasing developing germ cells and these effects of DEHP on the rat testis were dose dependent. The detrimental effect of DEHP on apermatogenesis and ultrastructure of rat testes seems to be derived from the decreased level of testosterone by Leydig cells, followed by the abnomalities of Sertoli cells and the germ cells.

  • PDF

Culture of Human Articular Chondrocytes in Serum-free Media

  • Choi, Yong-Soo;Lim, Sang-Min;Lee, Chang-Woo;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.335-339
    • /
    • 2003
  • The aim of this study is to optimize the monolayer cultivation of human articular chondrocytes in serum-free media. For this purpose, chondrocytes were isolated from human articular cartilage and monolayer cultures were performed in DMEM/F12 medium with 10% fetal bovine serum (FBS) or serum-free media (SFM) containing various supplements and epidermal growth factor (EGF). Western blotting analysis, RT-PCR, dimethylmethylene blue (DMB) assay were carried out to evaluate the synthesis of collagen type II (Col. II) and glycosaminoglycans (GAGs). We observed that SFM with EGF stimulated the cell growth while the amounts of synthesized GAGs and Col. II were decreased gradually. However, the Col. II mRNA level was increased when the SFM was replaced by media containing 10% FBS. This study suggests that it is possible to obtain large amount of human articular chondrocytes by short-term monolayer cultures in SFM.

  • PDF