• Title/Summary/Keyword: 지보재

Search Result 223, Processing Time 0.025 seconds

Three-Dimensional Finite Element Analysis Considering Time Dependent Behavior Characteristic of Tunnel Support Materials (시간 의존적 거동 특성을 고려한 터널 지보재의 3 차원 유한요소해석)

  • Gang, Dong-Yun;Kim, Tae-Beom
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.330-332
    • /
    • 2017
  • 본 논문에서는 숏크리트 지보재의 시간 의존적 경화특성을 고려한 터널 지보재의 3차원 유한요소해석을 수행하였다. NATM터널에 대한 기존 숏크리트 지보재 해석방식에 의한 결과화 제안된 시간 의존적 해석방법의 결과를 비교함으로서, 시간의존적 특성이 숏크리트 지보재의 응력 및 내공변위에 미치는 영향을 분석하였다. 시간 의존적 특성을 고려한 3차원 해석방법이 숏크리트 지보재의 변형을 과소평가 할 수 있음을 확인하였다.

  • PDF

An Experimental Study on Load Bearing Capacity of Lattice Girder as a Steel Support in Tunnelling (터널 지보재로서 격자지보의 하중지지력에 관한 실험적 연구)

  • 유충식;배규진
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.163-176
    • /
    • 1997
  • It has long been recognized that the H-beam steel rib has many shortcomings when used as a steel support in tunneling. One of the major shortcomings is the shotcrete shadow created behind H-beam flange which eventually reduces the load bearing capacity of shotcrete shell. In many European countries, plate girder as the H-beam steel rib has been replaced by lattice girder which has many advantages over the H-beam steel rib. Successful application of the lattice girder as a steel support requires a thorough investigation on the load bearing capacity of the lattice girder. Therefore, laboratory bending and compression tests were conducted on lattice girders with the aim of investigating the load bearing capacity of the lattice girders. The results of tests show that the load bearing capacity of laIn twice girders is higher than that of H-beams, which indicates that the lattice girder can be effectively used as a support in tunneling.

  • PDF

Numerical estimation for safety factors of tunnels considering the failure of supports (지보재 파괴를 고려한 터널 안전율의 수치해석적 산정 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Hong, Keun-Young;Lee, Hyun-Koo;Kim, Jea-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.37-49
    • /
    • 2005
  • In a tunnel, failure of its supports can cause failure of the tunnel. Therefore it is important to estimate safety factor of the tunnel which the failure of its supports is taken into account. In previous studies, supports of tunnels were usually modelled as beam elements. The failure of the supports was decided by comparing the allowable stress and the calculated bending stresses inside the beam elements in estimating safety factor of the tunnel considering the failure of its supports. In this study, it is suggested how to model the supports properly. To this end, supports of a tunnel were modelled by both beam (elastic) elements and continuum (elasto-plastic) elements in two dimensional numerical analyses. Meanwhile, it was analyzed how rock mass class, coefficient of lateral pressure, shotcrete thickness, the existence of rock bolt, and excavation method had an effect on the safety factor of a tunnel.

  • PDF

Model Experiments and Behavior Analyses of The Tunnel Support Using TDR Sensor (TDR센서를 이용한 터널 지보재의 모형 실험과 거동해석)

  • Park, Min-Cheol;Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Young
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.35-45
    • /
    • 2011
  • This paper is to analyze the behaviors of tunnel support by TDR(Time Domain Reflectometry) sensor using electrical pulse. To analysis the behaviors of tunnel support, Copper tape as sensing materials was studied for on-site installation. Copper tape to the top of the glass tape, foam tape, and shielding the lower part was used electromagnetic shield sheet. For a high sensitivity to load and fill out the measurement noise emissions has been developed for the production of materials. This sensing material through the tunnel model tests for the change by surcharge load in TDR data were analyzed. Varing stiffness and support of conditions were determined the change of TDR data through PVC pipe tunnel section model tests. By comparing TDR data and finite element analysis, the behaviors of the tunnel support materials were analyzed qualitatively.

A Study on the Support System of Large Caverns Under High Initial Stress (과지압 하에 있는 대규모 지하공동의 지보 시스템에 관한 연구)

  • 박연준;유광호;최영태;김재용
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.154-166
    • /
    • 2004
  • A numerical stability analysis was conducted on the large oil storage caverns excavated in a rock mass under high initial horizonal stress. The behaviors of the surrounding rock mass, rockbolts, and shotcrete were analyzedr and stability of the support members were assessed. For a proper support system design, the effect of the modelling technique, cavern shape and rockbolt length on the stability of the cavern was investigated. Results show that installation timing of supports and the change in cavern shape due to stepwise excavation affect the stress induced in support members. Also found was desperate need for a numerical technique which can properly reflect the behavior of the steel fiber reinforced shotcrete.

Evaluation on the Applicability of a Lattice Girder for a Support System in Tunnelling (격자지보의 터널지보재로서의 현장 적용성 평가)

    • Tunnel and Underground Space
    • /
    • v.9 no.3
    • /
    • pp.204-213
    • /
    • 1999
  • NATM(New Austrian Tunnelling Method) uses a support system of shotcrete, rockbolt and steel support, which are installed after tunnel excavation. Recently, a lattice girder among these support system is used in tunnelling. A lattice girder is a new steel support developed in Europe for the replacement of an existing H-shaped steel set, which is reported to have some problems in installation. This is a triangular shape welded with steel rods and is a light-weight support system which enables fast and easy installation of porepolling. The major advantage of a lattice girder is the good bonding with shotcrete. In this study, to evaluate the applicability of a lattice girder in tunnelling in Korea, field tests were performed at a high speed railway tunnel with a large section. Also, features of lattice girder in field tests were compared with those of a H-shaped steel set respectively. Field tests proved that a lattice girder fully supported the initial earth pressure developed right after excavation and limited ground deformation effectively.

  • PDF

Support Characteristics of Rock Bolt and Spiral Bolt (록 볼트 및 스파이럴 볼트의 지보특성)

  • Cho, Young-Dong;Song, Myung-Kyu;Lee, Chung-Shin;Kang, Choo-Won;Ko, Jin-Seok;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.181-189
    • /
    • 2009
  • This study is to evaluate an effect of supports with respect to these supports after comparing the characteristic of support between rock bolt of a widely used type and spiral bolt of a new type. For these purposes, we performed pull-out test in laboratory about rock and spiral bolts in the case of cement-mortar grout curing periods, 7 and 28 days, then calculated pull-out load, displacement, external pressure, inner pressure and shear stress using data obtained from the results of pull-out test, respectively. In relation between pull-out load and displacement, displacement of spiral bolt is larger than one of rock bolt. It is considered that mechanical property of rock bolt is due to larger than one of spiral bolt. In addition, displacement of supports shows nearly same or decreasing with curing periods. We found that because adhesive force between supports and cement-mortar grout is increasing with compressive strength of grout according to curing periods. The inner pressure of spiral bolt is represented larger than one of rock bolt at a step of same pull-out load. It is suggested that spiral bolt is more stable than rock bolt, maintaining stability of ground or rock mass, when supports are installed in a ground or rock mass under the same condition. Putting together with above results, we can consider that spiral bolt as a new support on an aspect of pull-out load and inner pressure is larger than rock bolt in a ground or rock mass under the same condition. Moreover, spiral bolt is more effective support than rock bolt, considering an economical and constructive aspects of supports, as well as ground or rock stability before or after installing supports.

An Experimental Study on the Characteristics of a Composite Structure of Lattice Girder and Shotcrete (격자지보와 숏크리트 복합구조체의 특성 실험 연구)

  • Mun, Hong-Deuk;Baek, Yeong-Sik;Bae, Gyu-Jin
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.155-168
    • /
    • 1997
  • Lattice girder is a new steel support developed in Europe for the replacement of an existing H-shaped steel set, which is installed after tunnel excavation. Lattice girder has the following several advantages : 1. Lattice girder minimizes the amount of shotcrete shadow which happens to occur behind a steel support. 2. A triangular shape of lattice girder makes shotcrete placed efficiently. 3. Lattice girder provides a good bond strength for shotcrete, which makes the composite structure of lattice girder and shotcrete behave monolithic, and therefore, the rock load can be supported effectively by the lattice girder system, This paper presents the results from a model wall test, a strength test for shotcrete shot on the model wall and a strength test for the bond between lattice girder and shotcrete. These tests proved that lattice-girder system is superior to H-shaped steel-set system concerning the shotcrete rebound rate, the developed shotcrete strength and the adhesion characteristics.

  • PDF

A study on the effect of support structure of steel rib in partitioning excavation of tunnel (터널 상·하반 분할 굴착 시 강지보재 지지구조 효과에 대한 연구)

  • Kim, Ki-Hyun;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Choi, Yong-Kyu;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.5
    • /
    • pp.543-561
    • /
    • 2020
  • This paper is the result of the study on the effect of the support structure of the tunnel steel rib. In tunnel excavation, the top and bottom half excavation methods result in subsidence of steel rib reinforcement due to insufficient support of steel rib reinforcement when the ground is poor after excavation. The foundation of the steel rib installed in the upper half excavates the bottom part of the base, causing the subsidence to occur due to various effects such as internal load and lateral pressure. As a result, the tunnel is difficult to maintain and its safety is problematic. To solve these problems, steel rib support structures have been developed. For the purpose of verification, the behavior of the supporting structure is verified by model experiments reduced to shotcrete and steel rib material similarity, the numerical analysis of ΔP and ΔP generated by bottom excavation by Terzaghi theoretical equation. As a result, it was found that the support structure of 20.100~198.423 kN is required for the 10~40 m section of the depth for each soil of weathered soil~soft rock. In addition, as a result of the reduced model experiment, a fixed level of 50% steel rib deposit of steel rib support structure was installed. The study shows that the installation of steel rib support structures will compensate for uncertainties and various problems during construction. It is also thought that the installation of steel rib support structure will have many effects such as stability, economy, and air reduction.

Supporting Characteristics of a Spiral Bolt through Pull-out Test (인발시험을 통한 스파이럴 볼트의 지보특성)

  • Kim, Jang-Won;Kang, Choo-Won;Song, Ha-Lim
    • Explosives and Blasting
    • /
    • v.29 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • To make large slopes or rock structures stable, supporting systems, such as anchor bolt, rock bolt and spiral bolt which are developed recently, are commonly used. In this study, in-situ pull-out tests were carried out to compare the characteristics of rock bolt that is most widely used with ones of spiral bolt that is newly developed. Re-pull-out test for the spiral bolt in which loading and unloading cycles are repeated three times showed that the maximum pull-out load is almost constant irrespective of the number of loading cycles, which may be due to no failure between spiral bolt and filler. On the other hand, the maximum pull-out load for the conventional rock bolt decreases with the number of loading cycles due to the partial failure between rock bolt and filler.