• Title/Summary/Keyword: 지능형 디지털 재설계

Search Result 44, Processing Time 0.024 seconds

Robust Intelligent Digital Redesign (강인 지능형 디지털 재설계 방안 연구)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.220-222
    • /
    • 2006
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated lineal operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs). Finally, a T-S fuzzy model for the chaotic Lorentz system is used as an example to guarantee the stability and effectiveness of the proposed method.

  • PDF

Intelligent Digital Redesign for Helicopter System (헬리콥터 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.3105-3107
    • /
    • 2005
  • We represent an efficient intelligent digital redesign method for a Takagi-Sugeno (T-S) fuzzy system. Intelligent digital redesign means that an existing analog fuzzy-model-based controller converts to equivalent digital counter part in the sense of state-matching. The proposed method performs previous work, moreover, it allows to matching the states of the overall closed-loop T-S fuzzy system with the predesigned analog fuzzy-model-based controller. And the problem of stability represent convex optimization problem and cast into linear matrix inequality (LMI) framework. This method applies to the helicopter systems which are the nonlinear plant and determine the feasibility and effectiveness of the proposed method.

  • PDF

Intelligent Digital Redesign of Uncertain Nonlinear Systems Using Power Series (Power Series를 이용한 불확실성을 포함된 비선형 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae;Kim, Do-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.496-498
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

  • PDF

Intelligent Digital Redesign Via Complete State-Matching (완벽한 상태정합을 이용한 지능형 디지털 재설계)

  • Kim, Do-Wan;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.276-278
    • /
    • 2006
  • In this paper, a complete solution to fuzzy-model-based digital redesign problem (IDR) for sampled-data nonlinear systems is presented, The term of intelligent digital redesign (IDR) is to design a digital fuzzy controller such that the sampled-data closed-loop fuzzy system is equivalent to the continuous-time closed-loop fuzzy system using the state matching, Its solution is simply obtained by linear transformation, Under the proposed sampled-data controller, the states of the sampled-data and continuous-time fuzzy system are completely matched at every sampling points.

  • PDF

Intelligent Digital Redesign for Continuous-Time TS Fuzzy Systems with Input Delay (입력 지연 TS 퍼지 시스템의 지능형 디지털 재설계)

  • Lee, Ho-Jae;Park, Jin-Bae;Cha, Dae-Beum;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2117-2119
    • /
    • 2001
  • This paper proposes a novel intelligent digital redesign technique for a class of nonlinear systems represented by input-delayed Takagi-Sugeno (TS) fuzzy systems. The digitally redesigned controller can show good performance provided that the analog controller is well-designed. The developed digital redesign technique is based on the 'state-matching', so the control performance is guaranteed as well as the stability of the system. An simulation example is included to ensure the effectiveness of the proposed method.

  • PDF

Intelligent Digital Redesign for Helicopter System (헬리콥터 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2453-2455
    • /
    • 2005
  • We represent an efficient intelligent digital redesign method for a Takagi-Sugeno (T-S) fuzzy system Intelligent digital redesign means that an existing analog fuzzy-model-based controller converts to equivalent digital counter part in the sense of state-matching. The proposed method performs previous work, moreover, it allows re matching the states of the overall closed-loop T-S fuzzy system with the predesigned analog fuzzy-model-based controller. And the problem of stability represent convex optimization problem and cast into linear matrix inequality (LMI) framework. This method applies to the helicopter systems which are the nonlinear plant and determine the feasibility and effectiveness of the proposed method.

  • PDF

Intelligent Digital Redesign for Helicopter System (헬리콥터 시스템의 지능형 디지털 재설계)

  • Sung, Hua-Chang;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1811-1813
    • /
    • 2005
  • We represent an efficient intelligent digital redesign method for a Takagi-Sugeno(T-S) fuzzy system. Intelligent digital redesign means that an existing analog fuzzy-model-based controller converts to equivalent digital counter part in the sense of state-matching. The proposed method performs previous work, moreover, it allows to matching the states of the overall closed-loop T-S fuzzy system with the predesigned analog fuzzy-model-based controller. And the problem of stability represent convex optimization problem and cast into linear matrix inequality(LMI) framework. This method applies to the helicopter systems which are the nonlinear plant and determine the feasibility and effectiveness of the proposed method.

  • PDF

유비쿼터스 네트워킹을 위한 컴퓨팅 미들웨어 기술의 설계

  • 김정기;신창민;유석대;박승민
    • Information and Communications Magazine
    • /
    • v.20 no.5
    • /
    • pp.645-656
    • /
    • 2003
  • 최근에 정보 산업과 이동 통신 기술이 발전함에 따라 퍼스널 컴퓨터를 넘어 컴퓨터의 개념이 매우 빠르게 확장되고 있다. 이동 정보 단말 형태의 PDA, HPC(hand-held PC), 휴대폰 등이 개발되었고, 셋탑박스(set-top box), 지능형 디지털 TV, 인터넷 냉장고 등의 정보가전은 임베디드 운영체제(embedded OS)를 내장하여 컴퓨터로 발전하고 있으며, 제어 및 계측 기기들도 마이크로 프로세서를 내장하여 임베디드 시스템으로 발전하고 있다. 이렇게 새롭게 확장된 컴퓨터 시스템들은 인간 생활의 편리성과 다양성을 위해 상호 연결되어 하나의 네트워크를 형성하고 있으며, 상호간에 정보를 공유하고 협력하여 언제 어디서나 통신 및 컴퓨팅이 가능한 유비쿼터스 네트워킹(Ubiquitous Networking)으로 발전하고 있다. 본 논문에서는 이러한 유비쿼터스 네트워킹에서 필요한 컴퓨팅 미들웨어(Middleware) 기술의 최근 동향을 살펴보고 본 연구에서 제안하는 새로운 미들웨어 기술을 설계한다. 이러한 미들웨어 기술은 편재(遍在)되어 있는 컴퓨팅 장치를 상호 이용하기 위해 컴퓨터의 환경을 탐지하여 저장하고 재이용하는 상황 인식 기술, 편재된 장치들이 네트워크에 연결되면서 정보를 전달하는 Ad-hoc 네트워킹과 동적 라우팅 기술, 그리고 정보 전달을 위해 제어 코드와 데이터를 패킷 (packet) 형태로 전달하는 협력 메시지(Cooperative Message) 기술 등이 포함된다.

Intelligent Digital Redesign of Uncertain Nonlinear Systems : Global approach (불확실성이 포함된 비선형 시스템에 대한 전역적 접근의 지능형 디지털 재설계)

  • Sung Hwachang;Joo Younghoon;Park Jinbae;kim Dowan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.11a
    • /
    • pp.95-98
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete -time system have proper reason. Sufficiently conditions for the global state -matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMls). Finally, we prove the effectiveness and stabilization of the proposed intelligent digital redesign method by applying the chaotic Lorentz system.

  • PDF

Intelligent Digital Redesign of a Fuzzy-Model-Based Controllers for Nonlinear Systems with Uncertainties (불확실성을 갖는 비선형 시스템을 위한 퍼지 모델 기반 제어기의 지능형 디지털 재설계)

  • Jang Kwon-Kyu;Kwon Oh-Shin;Joo Young-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.3
    • /
    • pp.227-232
    • /
    • 2006
  • In this paper, we propose a systematic method for intelligent digital redesign of a fuzzy-model-based controller for continuous-time nonlinear system which may also contain system uncertainties. The continuous-time uncertain TS fuzzy model is first contructed to represent the uncertain nonlinear system. A parallel distributed compensation(PDC) technique is then used to design a fuzzy-model-based controller for both stabilization. The designed continuous-time controller is then converted to an equivalent discrete-time controller by using a globally intelligent digital redesign method. This new technique is designed by a global matching of state variables between analog control system and digital control system. This new design technique provides a systematic and effective framework for integration of the fuzzy-model-based control theory and the advanced digital redesign technique for nonlinear systems with uncertainties. Finally, Chaotic Lorenz system is used as an illustrative example to show the effectiveness and the feasibility of the developed design method.