• Title/Summary/Keyword: 지구전기장

Search Result 96, Processing Time 0.029 seconds

국내 저탄소 그린에너지 특집 4탄 - 태양의 빛으로 에너지를 잡아라

  • Son, Yeong-Seon
    • Electric Engineers Magazine
    • /
    • s.336
    • /
    • pp.10-13
    • /
    • 2010
  • 세계는 지구온난화 대책과 경쟁성장의 양립을 지향하는 차원에서 재생에너지에 대한 기대가 높아지고 있으며, 그중 태양광발전은 무한정, 무공해 에너지로 잠재적인 이용 가능량이 많은점과 친환경화 에너지, 에너지 안보, 신성장동력 발굴 측면에서 그 필요성이 점차 높아지고 있다.

  • PDF

A Study on the Leachate Distribution of the Mooreung Landfill Site with Electrical Resistivity Surveys (전기비저항 탐사를 이용한 충주 무릉매립장 침출수 분포에 관한 연구)

  • Kim, Jun-Kyoung
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.455-463
    • /
    • 2006
  • The electrical resistivity prospecting method with dipole-dipole array was applied to the Mooreung landfill site in order to survey the existence of leachate around the landfill site. Moreover, if there is leachate within Mooreung landfill site, the analysis of potential pathways to exterior environments was tried. Within the landfill site, the over-all characteristics of the electrical resistivity anomalies suggest that the leachate induced from the landfill materials has infiltrated the basement rock and fill the pores of basement rock in some parts of the landfill site. The consistency of the anomaly locations (left part of each survey line), anomaly geometries, and absolute resistivity value of anomaly through the 3 survey lines suggests that the resistivity anomaly be connected from the upstream to the downstream and correspond to the leachate material. Finally, the result from the electrical resistivity survey line near the gateway of the landfill site suggests that some of the leachate induced from landfill material leaks to the exterior groundwater system. It is necessary that more surveys using both geochemical and geophysical methods should be performed to find out potential pathways and depths of the leachate more precisely.

An Electrical Resistivity Survey for Leachate Investigation at a Solid Waste Landfill (폐기물 매립지 침출수 조사를 위한 전기비저항 탐사)

  • Lee, Keun-Soo;Cho, In-Ky;Mok, Jong-Koo;Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The electrical resistivity method is an effective geophysical tool to detect subsurface contamination because the contaminated zones show generally lower electrical resistivity. In this study, the electrical resistivity surveys were applied to a waste landfill site to image the subsurface structure around the landfill and to identify the contaminated zones. First, the dipole-dipole 2D resistivity surveys were conducted along the boundaries of landfill to define the developed contaminated zones. Then the crosshole resistivity tomography was applied to confirm the suspected contaminated zones at depth. The results of drilling and geochemical analysis of ground water supported that the low resistivity zones coincide well with the contaminated zones and the leachate pathways could be delineated effectively from the resistivity survey.

Geophysical Investigation of the change of geological environment of the Nanjido Landfill due to the Stabilization Process (난지도 매립장의 안정화에 따른 지질환경 변화 조사를 위한 지구물리 탐사)

  • Lee, Kie-Hwa;Kwon, Byung-Doo;Rim, Hyoung-Rae;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.113-126
    • /
    • 2000
  • We have conducted multiple geophysical surveys to investigate the geoenvironmental change of the Nanjido Landfill due to the stabilization process. Geophyscial surveys are comprized of gravity, magnetic, dipole-dipole electrical and SP methods. Due to the field conditions, surveys were conducted on the top surface of the landfill no.2 and southern border areas in front of landfills. The gravity anomalies obtained on the top surface of the landfill no.2 in 1999 show that the gradient of the anomaly on the central area is decreasing in comparison with that observed four years ago. The complexity of magnetic anomaly pattern it also decreasing. These facts suggest that the stabilization work of the Nanjido landfill makes some progress by compaction process due to repetitive subsidence and refilling. The dipole-dipole electrical resistivity and SP data obtained on the outside of the waterproof wall at the landfill no.1 were severely affected by unsatisfactory surface conditions. On the other hand, the dipole-dipole electrical resistivity profiles obtained on the inside and outside parts of the waterproof wall at the landfill no.2 show the blocking effect of leachate flow by the waterproof wall. Few SP anomalies are observed on the top and side surfaces of the landfill no.2, but SP anomalies obtained on the base area inside the waterproof wall strongly reflect the effect of leachate collecting wells.

  • PDF

Application of Electromagnetic and Electrical Survey for Soil Contamination in Land-Fill Area (쓰레기 매립장의 토양오염 조사를 위한 전자탐사 및 전기탐사)

  • Chang Hyun-Sam;Lim Hae-Ryong;Hong Jae-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.87-91
    • /
    • 1998
  • Geophysical survey techniques, such as electromagnetic(EM), GPR, and electrical method, have been tested in the landfill area to evaluate the applicability of these methods to soil contamination measurement. The EM method has proven to be excellent on mapping the areal distribution of contaminants and the migration path for leachate. Since the field operation of EM technique is simple as well as fast, we think the EM method must be the first choice for these purposes. Electrical survey techniques have proven to be very effective on mapping sectional distribution of contaminants. Generally, the GPR method is very good on high resolution survey of shallow depth, and field data acquisition is simple, too. But the resistivity method gives better information on deep area, for example, deeper than the depth of 20 m.

  • PDF

MT response on the two dimensional anisotropic structure (2차원 이방성 구조의 MT 반응)

  • Lee, Chun Gi;Gwon, Byeong Du
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.123-134
    • /
    • 1999
  • Magnetotelluric responses may be affected by strong anisotropy of the high-conductivity layers (HCL) in the upper mantle or lower crust. We have studied two-dimensional anisotropy MT modelling to examine the effect of high anisotropic media. Electrical properties of a homogeneous anisotropic body are defined by a symmetric conductivity tensor and the problem is described by coupled diffusion equation in the frequency domain. In two-dimensional anisotropic environments, diagonal elements of the impedance tensor have higher values than those in isotropic environments. In some cases, TM mode phases reach more than 90°and apparent resistivities decrease for some frequency range because of telluric distortion. GB decomposition may be used to recover regional responses, but can be affected by the regional anisotropic effect. Considering these results, BC87 dataset was interpreted with a modified anisotropic model.

  • PDF

Electrical surveys at the Okmyung waste landfill of Pohang (포항 옥명 폐기물 매립장에서의 전기탐사)

  • Lee, Gi Hwa;Yun, Jong Ryeol
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.41-50
    • /
    • 1998
  • Schlumberger soundings, dipole-dipole survey and electrical conductivity mappings were carried out inside and in front of the entrance of the Okmyung waste landfill in August, 1997 and January, 1998. Inside and in front of the landfill, 11 and 4 electrical soundings and 1 dipole-dipole survey were carried out, respectively. Electrical conductivities were measured at 164 points along the 4 lines in front of the entrance of the landfill. Interpretations of survey data show that low resistivity zones of 0.3∼3 Ωm extend down to 65 m depth from the surface in the 6th landfill, which indicates subsurface contamination by leachate and leachate level at 3∼6 m depth from the surface. In the 9th landfill, low resistivity zones below 2 Ωm appear at 11∼15 m depth from the surface, which indicates a very slim chance of subsurface contamination. On the other hand, electrical surveys and electrical conductivity mappings reveal low resistivities at shallow depths in front of the entrance of the landfill, indicating a high possibility of contamination of weathered zone in this area. It appears that southern part of this area close to the 6th landfill is more contaminated by leachate.

  • PDF

DEVELOPMENT OF A SYSTEMATIC MODEL FOR STUDY ON THE PHENOMENA OF IONOSPHERIC AND GEOMAGNETIC VARIATIONS (전리층, 지자기 변화 연구를 위한 종합 모델 구축)

  • 표유선
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.293-306
    • /
    • 1999
  • Solar activities ejecting high energy particles influence satellites and satellite communications as well as perturb geomagnetic fields. To understand space environments near the Earth being influenced by the Sun, we must study about the magnetosphere, the ionosphere, and the atmosphere beforehand. To study this issue, we investigate some ionospheric models, atmospheric models and geomagnetic field models : IRI(International Reference Ionosphere), PIM(Parameterized Ionospheric Model) and IGRF(International Geomagnetic Reference Field). We develop the models and build a web site to serve IRI, PIM and IGRF model on the internet so that one can easily get information of daily and global ionospheric and geomagnetic variations.

  • PDF

Three-dimensional Modeling of Marine Controlled-source Electromagnetic Surveys Based on Finite Difference Method (유한차분법에 기초한 인공송신원 해양전자탐사 모델링)

  • Han, Nu-Ree;Nam, Myung-Jin;Ku, Bon-Jin;Kim, Hee-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.66-74
    • /
    • 2012
  • This paper presents development of a three-dimensional marine controlled-source electromagnetic (mCSEM) modeling algorithm and its application to a salt and reservoir model to examine detectability of mCSEM for a reservoir under complex subsurface structures. The algorithm is based on the finite difference method, and employs the secondary field formulation for an accurate and fast calculation of modeling responses. The algorithm is verified for a two-layer model by comparing solutions not only with analytic solutions but also with those from other 3D modeling algorithm. We calculate and analyze electric and magnetic fields and their normalized responses for a salt and reservoir model due to three sources located at boundaries between a salt, a reservoir, and background. Numbers and positions of resistive anomalies are informed by normalized responses for three sources, and types of resistive anomalies can be informed when there is a priori information about a salt by seismic exploration.

Application of Electrical and Small-Loop EM survey to the Identification of the Leachate at a Waste Landfill in Jeiu Island (제주도 쓰레기매립장 침출수 조사를 위한 전기 및 소형루프 전자탐사의 적용)

  • Song Sung-Ho;Yong Hwan-Ho;An Jung-Gi;Kim Gee-Pyo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.3
    • /
    • pp.143-152
    • /
    • 2003
  • Among the various geophysical approaches to identify the leakage of leachate with conductivity variation, conventional electrical resistivity survey has been mainly used at waste landfill. We adopted small-loop electromagnetic (EM) survey using multi-frequencies in parallel with electrical resistivity survey to delineate the leakage of leachate through the shallow soil layer at a waste landfill in Jeju Island, and also with self-potential monitoring to detect the streaming potential produced by the movement of leachate. There were no evidences of leakage from waste landfill according to the results of the electrical resistivity survey and SP monitoring, and it was also true from the results of water quality analysis at stream around waste landfill periodically. On the other hand, the results of one-dimensional inversion of spatially-filtered small-loop EM survey data showed the anomalous zone of low resistivity with depth both around and inner waste landfill.