• Title/Summary/Keyword: 지구물리탐사 기법

Search Result 308, Processing Time 0.023 seconds

Geophysical Techniques for Underwater Landslide Monitoring (수중 산사태 모니터링을 위한 지반물리탐사기술)

  • Truong, Q. Hung;Lee, Chang-Ho;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.7
    • /
    • pp.5-16
    • /
    • 2007
  • The monitoring and investigation of underwater landslide help to understand its mechanism, increase the usefuless of design and construction and reduce the losses. This paper presents three high resolution geophysical techniques electrical resisitance, ultrasonic wave reflection imaging, and shear wave tomography conducted to determine the lab-scaled submerged landslide. Electrical resistance profiles of a soil mass obtained by an electrical resistance probe provide detailed information to assess the spatial distribution of the soil mass with milimetric resolution. An ultrasonic wave image obtained by recording the reflections from interfaces of different impedance materials permits detecting layers and landslide with submilimetric resolution. The pixel based image of immersed landslides is created by the inversion of the boundary information achieved from the traveling time of shear waves. The experimental results show that the ultrasonic wave imaging and the electrical resistance can provide complementary information; and their association with S-wave tomography image can produce a 3-D view of the underwater landslide. This study suggests that geophysical techniques may be effective tools for the detection of the underwater landslides and spatial distribution offshore.

Study of Imaging of Submarine Bubble Plume with Reverse Time Migration (역시간 구조보정을 활용한 해저 기포플룸 영상화 연구)

  • Dawoon Lee;Wookeen Chung;Won-Ki Kim;Ho Seuk Bae
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.1
    • /
    • pp.8-17
    • /
    • 2023
  • Various sources, such as wind, waves, ships, and gas leaks from the seafloor, forms bubbles in the ocean. Underwater bubbles cause signal scattering, considerably affecting acoustic measurements. This characteristic of bubbles is used to block underwater noise by attenuating the intensity of the propagated signal. Recently, researchers have been studying the large-scale release of methane gas as bubble plumes from the seabed. Understanding the physical properties and distribution of bubble plumes is crucial for studying the relation between leaked methane gas and climate change. Therefore, a water tank experiment was conducted to estimate the distribution of bubble plumes using seismic imaging techniques and acoustic signals obtained from artificially generated bubbles using a bubble generator. Reverse time migration was applied to image the bubble plumes while the acquired acoustic envelope signal was used to effectively estimate bubble distribution. Imaging results were compared with optical camera images to verify the estimated bubble distribution. The water tank experiment confirmed that the proposed system could successfully image the distribution of bubble plumes using reverse time migration and the envelope signal. The experiment showed that the scattering signal of artificial bubble plumes can be used for seismic imaging.

Robust inversion of seismic data using ${\ell}^1/{\ell}^2$ norm IRLS method (${\ell}^1/{\ell}^2$ norm IRLS 방법을 사용한 강인한 탄성파자료역산)

  • Ji Jun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.227-232
    • /
    • 2005
  • Least squares (${\ell}^2-norm$) solutions of seismic inversion tend to be very sensitive to data points with large errors. The ${\ell}^p-norm$ minimization for $1{\le}p<2$ gives more robust solutions, but usually with higher computational cost. Iteratively reweighted least squares (IRLS) gives efficient approximate solutions of these ${\ell}^p-norm$ problems. I propose a simple way to implement the IRLS method for a hybrid ${\ell}^1/{\ell}^2$ minimization problem that behaves as ${\ell}^2$ fit for small residual and ${\ell}^1$ fit for large residuals. Synthetic and a field-data examples demonstrates the improvement of the hybrid method over least squares when there are outliers in the data.

  • PDF

Field Application of 3D seismic travel-time tomography (3차원 탄성파 지대공 토모그래피 현장 적용)

  • Moon, Yun-Seop;Ha, Hee-Sang;Lim, Harry;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.233-237
    • /
    • 2006
  • 3D travel time tomography was conducted to characterize the subsuface structure in the valley area. In this study, an area($200m{\times}200m$), where borehole informations were available to aid in the interpretation, was covered with wide source/receiver coverage. In data acquisition, both hole to hole and reverse VSP array was employed. For the inversion, 3D seismic traveltime tomography algorithm based on Fresnel volume was implemented. When compared 3D velocity cube with the geological survey and drilling logs, both results were matched well. From this, we concluded that 3D seismic travel time tomography has enough potential to the field application.

  • PDF

Imaging of Seismic Sources Using Time Reversal Wave Propagation (지진파 역행 전파를 이용한 지진원 영상화)

  • Sheen, Dong-Hoon;Baag, Chang-Eob;Hwang, Eui-Hong;Ryoo, Yong Gyu;Youn, Yong-Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.181-186
    • /
    • 2006
  • An imaging method of seismic sources using time-reversal wave propagation is presented. The method is based on the time-reversal invariance and the spatial reciprocity of the wave equation. Time-reversal wave propagation has been used to image anomalous features of a midium in medical imaging, non destructive testing and waveform tomography. Seismogram is the record whose energy is propagated from the seismic source. If time-reversed seismogram propagates back into the medium, seismic energy is concentrated at the origin time of the event and at the source location. In this work, a staggered-grid finite-difference method of the elastic wave equation is parallelized for 3-D wave propagation simulation. With numerical experiments, we show that the time-reversal imaging will enable us to explore the spatio-temporal history of complex earthquake.

  • PDF

Study on the dynamic deformation characteristics of pulse shapers for controlling the shape of impact waves (충격파형 제어를 위한 펄스쉐이퍼의 동적 변형 특성에 관한 연구)

  • Yang, Jeong-Hun;Jo, Sang-Ho;Kim, Won-Beom;Kim, Seung-Gon;Song, Yeong-Su;Seong, Nak-Hun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.198-202
    • /
    • 2009
  • Split Hopkinson pressure bar(SHPB) is used to obtain compressive stress-strain data and deformation characteristics of brittle materials such as rock and concrete. SHPB demands both dynamic stress equilibrium condition and nearly constant strain rate before the failure of the specimen. Pulse shape technique, which places a thin metal disk between launched impact bar and incident bar, should be adopted to satisfy both conditions. In this study, metallic disks with various shapes were used to control the incident impact wave. The results show that the peak value of stress and the length of waves increased with decreasing thickness and diameter of the pulse shaper. In order to investigate shape and strain rate-dependency of the pulse shapers, dynamic compressive stress-strain curves were obtained and analyzed.

  • PDF

Geostatistical Integration Analysis of Geophysical Survey and Borehole Data Applying Digital Map (수치지도를 활용한 탄성파탐사 자료와 시추조사 자료의 지구통계학적 통합 분석)

  • Kim, Hansaem;Kim, Jeongjun;Chung, Choongki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.3
    • /
    • pp.65-74
    • /
    • 2014
  • Borehole investigation which is mainly used to figure out geotechnical characterizations at construction work has the benefit that it provides a clear and convincing geotechnical information. But it has limitations to get the overall information of the construction site because it is performed at point location. In contrast, geophysical measurements like seismic survey has the advantage that the geological stratum information of a large area can be characterized in a continuous cross-section but the result from geophysics survey has wide range of values and is not suitable to determine the geotechnical design values directly. Therefore it is essential to combine borehole data and geophysics data complementally. Accordingly, in this study, a three-dimensional spatial interpolation of the cross-sectional distribution of seismic refraction was performed using digitizing and geostatistical method (krigring). In the process, digital map were used to increase the trustworthiness of method. Using this map, errors of ground height which are broken out in measurement from boring investigation and geophysical measurements can be revised. After that, average seismic velocity are derived by comparing borehole data with geophysical speed distribution data of each soil layer. During this process, outlier analysis is adapted. On the basis of the average seismic velocity, integrated analysis techniques to determine the three-dimensional geological stratum information is established. Finally, this analysis system is applied to dam construction field.

Semi Variance Measurement on Tunnel using 3D Laser Scanning (3차원 레이저 측량기를 이용한 터널 변위 관측)

  • Lee, Jae-One;Kim, Yong-Suk;Song, Youn-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 2007
  • There are many risks in constructing tunnel-structure. To prevent these risks from occurring and secure safety, the precise and rapid survey of inside displacement of the tunnel is required. But nowadays the measurement of the crown settlement, convergency, and surface settlement depends on general kinds of method which use total station or level. In the way to provide data about maintaining structure according to recent improvement and progress of measuring technology, 3D laser scanning is used. It solves the problem of reliability in measuring displacement of existing structure, provides material that enables to estimate shape change of structure visually, and makes it possible to deliberate speedy countermeasure. By this three dimensioning it is possible to make efficient use of structure maintenance and field measurement.

  • PDF

Evaluation of dynamic ground properties using laterally impacted cross-hole seismic test (횡방향 발진 크로스홀 탄성파 시험을 이용한 지반의 동적 특성 평가)

  • Mok Young-Jin;Sun Chang Guk;Kim Jung-Han;Jung Jin-Hun;Park Chul-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.155-175
    • /
    • 2005
  • Soil and rock dynamic properties such as shear wave velocity (VS), compressional wave velocity (VP) and corresponding Poisson's ratio ( v ) are very important geotechnical parameters in predicting deformational behavior of structures as well as practicing seismic design and performance evaluation. In an effort to measure the parameter efficiently and accurately, various bore-hole seismic testing techniques have been, thus, developed and used during past several decades. In this study, cross-hole seismic testing technique which is known as the most reliable seismic method was adopted for obtaining geotechnical dynamic properties. To perform successfully the cross-hole test for rock as well as soil layers regardless of the ground water level, spring-loaded source which impact laterally a subsurface ground in vertical bore-hole was developed and applied at three study areas, which contain four sites composed of two existing port sites and two new LNG storage facility sites. The geotechnical dynamic properties such as VS, VP and v with depth were efficiently determined from the laterally impacted cross-hole seismic tests at study sites, and were provided as the fundamental parameters for the seismic performance evaluation of the existing ports and the seismic design of the LNG storage facilities.

  • PDF

Processing of Side Scan Sonar and SBP Data for the Artificial Reef Area (인공어초지역에 대한 사이드스캔소나와 SBP 탐사 자료처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Jang, Won-Il;Lim, Jong-Se;Yoon, Ji-Ho;Lee, Seong-Min
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.192-198
    • /
    • 2009
  • Side scan sonar and SBP (sub-bottom profiler) play a very important role in the survey for seafloor imaging and sub-bottom profiling. In this study, we have acquired side scan sonar and SBP data from the artificial reef area. We applied digital image processing techniques to side scan sonar data in order to improve an image quality. For the enhancement of data quality and image resolution, we applied the typical seismic data processing sequence including gain recovery, muting, spectrum analysis, predictive deconvolution, migration to SBP data. We could easily estimate if artificial reef structures were settled properly and their distribution on the seafloor from the integrated interpretation of side scan sonar and SBP data. From the sampling analysis of seabed sediments, texture filtering of side scan sonar data and SBP data interpretation, we could evaluate the sediment type, distribution and thickness of seafloor sediments in detail.