DOI QR코드

DOI QR Code

Study of Imaging of Submarine Bubble Plume with Reverse Time Migration

역시간 구조보정을 활용한 해저 기포플룸 영상화 연구

  • Dawoon Lee (Department of Ocean Energy & Resources Engineering, Korea Maritime & Ocean University) ;
  • Wookeen Chung (Department of Ocean Energy & Resources Engineering, Korea Maritime & Ocean University) ;
  • Won-Ki Kim (Agency for Defense Development) ;
  • Ho Seuk Bae (Agency for Defense Development)
  • 이다운 (한국해양대학교 해양에너지자원공학과) ;
  • 정우근 (한국해양대학교 해양에너지자원공학과) ;
  • 김원기 (국방과학연구소) ;
  • 배호석 (국방과학연구소)
  • Received : 2023.02.02
  • Accepted : 2023.02.24
  • Published : 2023.02.28

Abstract

Various sources, such as wind, waves, ships, and gas leaks from the seafloor, forms bubbles in the ocean. Underwater bubbles cause signal scattering, considerably affecting acoustic measurements. This characteristic of bubbles is used to block underwater noise by attenuating the intensity of the propagated signal. Recently, researchers have been studying the large-scale release of methane gas as bubble plumes from the seabed. Understanding the physical properties and distribution of bubble plumes is crucial for studying the relation between leaked methane gas and climate change. Therefore, a water tank experiment was conducted to estimate the distribution of bubble plumes using seismic imaging techniques and acoustic signals obtained from artificially generated bubbles using a bubble generator. Reverse time migration was applied to image the bubble plumes while the acquired acoustic envelope signal was used to effectively estimate bubble distribution. Imaging results were compared with optical camera images to verify the estimated bubble distribution. The water tank experiment confirmed that the proposed system could successfully image the distribution of bubble plumes using reverse time migration and the envelope signal. The experiment showed that the scattering signal of artificial bubble plumes can be used for seismic imaging.

해양 환경에서의 기포는 바람, 파도, 선박 및 해저 가스 누출을 포함한 여러 요인에 의해 생성된다. 수중에서의 기포는 강력한 산란 신호를 생성하여 음향 신호를 측정하는데 영향을 미친다. 이러한 기포의 특성은 음파 신호의 세기를 감쇠시켜 소음 차단 목적으로 주로 이용되고 있으며, 최근에는 해저에서 대규모로 누출되는 메탄가스 탐지를 위한 연구가 진행되고 있다. 이러한 가스 누출은 기포플룸의 형태를 취하며, 기포의 물리적 특성과 분포 구조를 이해하는 것은 누출된 가스를 기후 변화와 연관성을 파악하는데 중요한 요소 중 하나이다. 본 연구에서는 탄성파 영상화 기법을 이용하여 기포플룸의 분포를 추정하고자 수조환경에서 실험을 수행하였으며, 별도로 제작된 인공기포 발생기, 자료 취득 시스템을 이용하여 기포에 의한 음향 신호를 취득하였다. 기포플룸을 영상화하기 위해 지진파 영상기법 중 역시간 구조보정을 이용하였으며, 획득한 음향 신호의 포락선 신호를 이용하여 기포 분포 패턴을 효과적으로 추정하였다. 영상화 결과의 검증을 위해 추정된 기포플룸의 분포와 광학카메라 영상을 비교하였다. 실험결과 탄성파 영상화 기법 통해 인공 기포플룸의 산란신호를 이용한 영상화가 가능함을 확인하였다.

Keywords

Acknowledgement

이 논문은 2022년 정부(방위사업청)의 재원으로 국방과학연구소의 지원을 받아 수행된 연구임(UE200017DD).

References

  1. Aoyama, C., Matsumoto, R., Hiruta, A., Ishizaki, O., Machiyama, H., Numanami, H., Hiromatsu, M., and Snyder, G., 2007, Acoustical surveys of Methane plumes using the quantitative echo sounder in Japan Sea, In 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, 249-255. https://cir.nii.ac.jp/crid/1573668925528507392
  2. Bae, H. S., Kim, W. K., Son, S. U., and Park, J. S., 2022, Imaging of Artificial Bubble Distribution Using a Multi-Sonar Array System, J. Mar. Sci. Eng., 10(12), 1822. https://www.mdpi.com/2077-1312/10/12/1822 10/12/1822
  3. Bogoyavlensky, V., Kishankov, A., and Kazanin, A., 2023, Evidence of large-scale absence of frozen ground and gas hydrates in the northern part of the East Siberian Arctic shelf (Laptev and East Siberian seas), Mar. Pet. Geol., 148, 106050. doi: 10.1016/j.marpetgeo.2022.106050
  4. Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W., and McCabe, A. M., 2009, The last glacial maximum, Science, 325(5941), 710-714. doi: 10.1126/science.1172873
  5. Clay, C. S., and Medwin, H., 1977, Acoustical oceanography: principles and applications, Wiley. doi: 10.1016/S0022-460X(78)80104-7
  6. Colbo, K., Ross, T., Brown, C., and Weber, T., 2014, A review of oceanographic applications of water column data from multibeam echosounders, Estuar. Coast. Shelf. Sci., 145, 41-56. doi: 10.1016/j.ecss.2014.04.002
  7. Dahne, M., Tougaard, J., Carstensen, J., Rose, A., and Nabe-Nielsen, J., 2017, Bubble curtains attenuate noise from offshore wind farm construction and reduce temporary habitat loss for harbour porpoises, Mar. Ecol. Prog. Ser., 580, 221-237. doi: 10.3354/meps12257
  8. Dickens, G. R., 2011, Down the rabbit hole: Toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events, Climate of the Past, 7(3), 831-846. doi: 10.5194/cp-7-831-2011
  9. Dondurur, D., 2018, Acquisition and processing of marine seismic data. Elsevier. https://scholar.google.co.kr/citations?view_op=view_citation&hl=ko&user=Zv_0bDIAAAAJ&citation_for_view=Zv_0bDIAAAAJ:EUQCXRtRnyEC
  10. Duchesne, M. J., Fabien-Ouellet, G., and Bustamante, J., 2023, Detecting subsea permafrost layers on marine seismic data: An appraisal from forward modelling, Near Surf. Geophys., 21(1), 3-20. doi: 10.1002/nsg.12231
  11. Kang, S. G., Jin, Y. K., Jang, U., Duchesne, M. J., Shin, C., Kim, S., Riedel, M., Dallimore, S. R., Paull, C. K., Choi, Y., and Hong, J. K., 2021, Imaging the P-wave velocity structure of Arctic subsea permafrost using Laplace-domain full-waveform inversion, J. Geophys. Res. Earth Surf., 126(3), e2020JF005941. doi: 10.1029/2020JF005941
  12. Leighton, T. G., Meers, S. D., and White, P. R., 2004, Propagation through nonlinear time-dependent bubble clouds and the estimation of bubble populations from measured acoustic characteristics, Proc. Math. Phys. Eng. Sci., 460(2049), 2521-2550. https://resource.isvr.soton.ac.uk/staff/pubs/PubPDFs/2004%20Leighton%20Meers%20White%20(PRS)%20Propagation%20through%20nonlinear.pdf https://doi.org/10.1098/rspa.2004.1298
  13. Leighton, T. G., Ramble, D. G., and Phelps, A. D., 1997, The detection of tethered and rising bubbles using multiple acoustic techniques, J. Acoust. Soc. Am., 101(5), 2626-2635. doi: 0.1121/1.418503 https://doi.org/10.1121/1.418503
  14. Li, J., Roche, B., Bull, J. M., White, P. R., Leighton, T. G., Provenzano, G., Dewar, M., and Henstock, T. J., 2020, Broadband acoustic inversion for gas flux quantification-Application to a methane plume at Scanner Pockmark, central North Sea, J. Geophys. Res. Oceans, 125(9), e2020JC016360. doi: 10.1029/2020JC016360
  15. Mclntyre, D., Rahimpour, M., Dong, Z., Tani, G., Miglianti, F., Viviani, M., and Oshkai, P., 2022, Experimental measurements and numerical simulations of underwater radiated noise from a model-scale propeller in uniform inflow, Ocean Engineering, 255, 111409. doi: 10.1016/j.oceaneng.2022.111409
  16. Minnaert, M., 1933, XVI. On musical air-bubbles and the sounds of running water, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 16(104), 235-248. doi: 10.1080/14786443309462277
  17. Nikolovska, A., Sahling, H., and Bohrmann, G., 2008, Hydroacoustic methodology for detection, localization, and quantification of gas bubbles rising from the seafloor at gas seeps from the eastern Black Sea, Geochem. Geophys. Geosyst., 9(10), Q10010. doi: 10.1029/2008GC002118
  18. Sayedi, S. S., Abbott, B. W., Thornton, B. F., Frederick, J. M., Vonk, J. E., Overduin, P., Schadel, C., Schuur E. A. G., Bourbonnais, A., and Frei, R. J., 2020, Subsea permafrost carbon stocks and climate change sensitivity estimated by expert assessment, Environ. Res. Lett., 15(12), 124075. doi: 10.1088/1748-9326/abcc29
  19. Shakhova, N., Semiletov, I., Salyuk, A., Yusupov, V., Kosmach, D., and Gustafsson, O., 2010, Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf, Science, 327(5970), 1246-1250. doi: 10.1126/science.1182221
  20. Shin, C., Min, D. J., Yang, D. W., and Lee, S. K., 2003, Evaluation of poststack migration in terms of virtual source and partial derivative wavefields. J. Seism. Explor., 12, 17-37. https://sciwatch.kiost.ac.kr/handle/2020.kiost/5513
  21. Stemland, H. M., Johansen, T. A., Ruud, B. O., and Mavko, G., 2020, Elastic properties as indicators of heat flux into cold near-surface Arctic sediments, Geophysics, 85(5), MR309-MR323. doi: 10.1190/geo2019-0662.1
  22. Thomsen, F., Ludemann, K., Kafemann, R., and Piper, W., 2006, Effects of offshore wind farm noise on marine mammals and fish, Biola, Hamburg, Germany on behalf of COWRIE Ltd, 62, 1-62. https://www.researchgate.net/publication/228653581_Effects_of_Offshore_Wind_Farm_Noise_on_Marine_Mammals_and_Fish
  23. Toramaru, A., 1990, Measurement of bubble size distributions in vesiculated rocks with implications for quantitative estimation of eruption processes, Journal of Volcanology and Geothermal Research, 43(1-4), 71-90. doi: 10.1016/0377-0273(90)90045-H
  24. Urban, P., Koser, K., and Greinert, J., 2017, Processing of multibeam water column image data for automated bubble/seep detection and repeated mapping, Limnol. Oceanogr Methods, 15(1), 1-21. doi: 10.1002/lom3.10138
  25. Veloso, M., Greinert, J., Mienert, J., and De Batist, M., 2015, A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-S valbard, Limnol. Oceanogr Methods, 13(6), 267-287. doi: 10.1002/lom3.10024
  26. Walsh, J. E., 2013, Melting ice: What is happening to Arctic sea ice, and what does it mean for us?, Oceanography, 26(2), 171-181. doi:10.5670/oceanog.2013.19
  27. Wu, R. S., 1985, Multiple scattering and energy transfer of seismic waves-separation of scattering effect from intrinsic attenuation-I. Theoretical modelling, Geophys. J. Int., 82(1), 57-80. doi: 10.1111/j.1365-246X.1985.tb05128.x
  28. Wu, R. S., and Chen, G. X., 2017, New Frechet derivative for envelope data and multi-scale envelope inversion, In 79th EAGE Conference and Exhibition 2017, 1, 1-5. doi: 10.3997/2214-4609.201700833
  29. Zhang, P., Wu, R. S., and Han, L., 2018, Source-independent seismic envelope inversion based on the direct envelope Frechet derivative, Geophysics, 83(6), R581-R595. doi: 10.1190/geo2017-0360.1