• Title/Summary/Keyword: 지구물리탐사기법

Search Result 307, Processing Time 0.022 seconds

Three-Dimensional Resistivity Modeling by Serendipity Element (Serendipity 요소법에 의한 전기비저항 3차원 모델링)

  • Lee, Keun-Soo;Cho, In-Ky;Kang, Hye-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2012
  • A resistivity method has been applied to wide range of engineering and environmental problems with the help of automatic and precise data acquisition. Thus, more accurate modeling and inversion of time-lapse monitoring data are required since resistivity monitoring has been introduced to quantitatively find out subsurface changes With respect to time. Here, we used the finite element method (FEM) for 3D resistivity modeling since the method is easy to realize complex topography and arbitrary shaped anomalous bodies. In the FEM, the linear elements, also referred to as first order elements, have certain advantages of simple formulation and narrow bandwidth of system equation. However, the linear elements show the poor accuracy and slow convergence of the solution with respect to the number of elements or nodes. To achieve the higher accuracy of finite element solution, high order elements are generally used. In this study, we developed a 3D resistivity modeling program using high order Serendipity elements. Comparing the Serendipity element solutions for a cube model with the linear element solutions, we assured that the Serendipity element solutions are more accurate than the linear element solutions in the 3D resistivity modeling.

Applicability Analysis on Estimation of Spectral Induced Polarization Parameters Based on Multi-objective Optimization (다중목적함수 최적화에 기초한 광대역 유도분극 변수 예측 적용성 분석)

  • Kim, Bitnarae;Jeong, Ju Yeon;Min, Baehyun;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • Among induced polarization (IP) methods, spectral IP (SIP) uses alternating current as a transmission source to measure amplitudes and phase of complex electrical resistivity at each source frequency, which disperse with respect to source frequencies. The frequency dependence, which can be explained by a relaxation model such as Cole-Cole model or equivalent models, is analyzed to estimate SIP parameters from dispersion curves of complex resistivity employing multi-objective optimization (MOO). The estimation uses a generic algorithm to optimize two objective functions minimizing data misfits of amplitude and phase based on Cole-Cole model, which is most widely used to explain IP relaxation effects. The MOO-based estimation properly recovered Cole-Cole model parameters for synthetic examples but hardly fitted for the real laboratory measures ones, which have relatively smaller values of phases (less than about 10 mrad). Discrepancies between scales for data misfits of amplitude and phase, used as parameters of MOO method, and it is in necessity to employ other methods such as machine learning, which can deal with the discrepancies, to estimate SIP parameters from dispersion curves of complex resistivity.

A Study to Estimate the Seawater Leakage Zone of the Embankment using SP and Pole-pole Array Resistivity Survey (SP 및 단극배열 전기비저항탐사를 이용한 방조제 누수지점 탐지)

  • Song Sung-Ho;Lee Kyu-Sang;Kim Jin-Ho;Jang Eui-Woong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.19-40
    • /
    • 2000
  • We applied both SP monitoring and pole-pole array resistivity surveys and SP survey and dipole-dipole array resistivity survey to leakage problems in several embankments and dike, respectively, to estimate and detect the zone of leakage. The embankment is generally affected by tidal variation and has low resistivity characteristics due to the high saturation of seawater. According to this situation, SP monitoring and resistivity survey using pole-pole electrode array, which is relatively more effective to the conductive media, were carried out to delineate the leakage zones of sea water through the embankment. We checked out electrical conductivity(EC) and temperature variations along the inner part of the embankment to detect the zone of seawater leakage and found that the measured EC value agreed to that of seawater in the leakage zone and the temperature was lower than that of the vicinity of leakage zone. SP monitoring results were coincide with tidal variations at each embankment. Based on the survey results, it is concluded that both SP monitoring and the pole-pole array resistivity method are quite effective for investigation of seawater leakage zones in the embankment.

  • PDF

Shallow Subsurface Structure of the Yaksoo Area, Ulsan, Korea by Geophysical Surveys (물리탐사기법에 의한 울산광역시 약수지역 천부지하구조 조사)

  • Lee, Jung-Mo;Kong, Young-Sae;Chang, Tae-Woo;Park, Dong-Hee;Kim, Tae-Kyung
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.57-66
    • /
    • 2000
  • The location and geometry of the Ulsan Fault play important roles in interpreting tectonic evolution of the southeastern part of the Korean Peninsula. Dipole-dipole electrical resistivity surveys and seismic refraction surveys were carried out in the Yaksoo area, Ulsan in order to measure the thickness of the alluvium covering the Ulsan Fault and to find associated fracture zones and possibly the location of its major fault plane. The collected data were analyzed and interpreted. Some results reported previously by others were also used in this interpretation. No low resistivity anomalies were found in the cross-sectional resistivity image of the survey line located in the east of the Dong River. In contrast, well-developed continuous low resistivity anomalies were detected in the west of the Dong River. This strongly suggests that the major fault plane of the Ulsan Fault is located under or in the west part of the Dong River. Two refraction boundaries corresponding to the underground water level and the bottom of the alluvium were found by refraction surveys carried out on the limited part of the east survey line. The thickness of the alluvium was found to be about 30 m. Small faults in the basement rock identified by reflection surveys were not detected by both resistivity and refraction seismic surveys. This might be explained by assuming that low resistivity anomaly is more closely related to the clay contents than the water contents. On the other hand, it may be resulted by the limited resolution of the resistivity and refraction surveys. Detailed study is required to clarify the reason. Resistivity survey is frequently considered to be a good exploration method to detect subsurface faults. However, it appears to be less useful than reflection seismic survey in this work. In dipole-dipole resistivity survey, the number of separation should be increased to survey deeper subsurface with the same resolution. However, signal to noise ratio decreases as the number of separation increases. In this survey area, the signal to noise ratio of up to sixteen separations was good enough based on the statistical properties of measurements.

  • PDF

A Case Study on The Data Processing and Interpretation of Aeromagnetic Survey Conducted in The Low Latitude Area: Stung Treng, Cambodia (저위도 캄보디아 스퉁트렝 지역의 항공자력탐사 자료처리 및 해석)

  • Shin, Eun-Ju;Ko, Kwang-Beom;You, Young-June;Jung, Yeon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.136-143
    • /
    • 2012
  • In this case study, we present the various and consistent processing techniques for the reasonable interpretation of aeromagnetic data. In the processing stage, we especially focused on the three major respects. First, in the low latitude area, severe artifacts are occurred as a result of reduction to the pole technique. To overcome this problem, variable alternative methods were investigated. From the comparison of each technique, we concluded that energy balancing method gives more fruitful result. Second, because of limited a priori information, it is nearly impossible to employ detailed geological survey due to wide and thick spreading of soils in the survey area. So we especially investigated the new techniques such as extracting slope, curvature and aspect information mainly used in GIS field as well as conventional methods. Finally, by using the Euler deconvolution, we extracted the depth information on the magnetic anomalous body. From the synthetic analysis between depth information and previous discussed results, the detailed future survey area was proposed. We think that a series of processing techniques discussed in this study may perform an important role in the domestic and abroad resource development project as a useful guideline.

ADVANTAGE OF USING FREE NETWORK ADJUSTMENT TECHNIQUE IN THE CRUSTAL MOVEMENT MONITORING GEODETIC NETWORKS

  • AhmedM.Hamdy;Jo,Bong-Gon
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2003
  • There are numerous adjustment techniques that deal with the adjustment of geodetic networks but the least squares adjustment is the most common one. During the network adjustment procedure two techniques can be used, the free network adjustment technique and the constrained network adjustment technique. In order to determine the optimum technique for adjusting the geodetic networks, which used for the geodynamical purposes, data from two different geodetic networks "Sinai geodetic network, Egypt, and HGN network, South Korea" had been examined. The used networks had a different configuration and located in different areas with different seismic activity. The results show that both techniques have a high accuracy and no remarkable differences in terms of RMS. On the contrary, the resulted coordinates shows that the constrained network adjustment technique not only cause a remarkable distortion in the station final coordinates but also if the fixed points that define the datum parameters are changed different solutions for the coordinates will be determined. This distortion affect not only in the determination of point displacement but also in the estimation of the deformation parameters, which play a significant role in the geodynamical interpretation of results. Comparing the results which obtained from both techniques with the widely known geodynamical models of the area reviles that the free network adjustment technique results are clearly match with these models, while those obtained from the constrained technique didn’t match at all. By considering the results it seams to be that the free network adjustment technique is the optimum technique, which can be used for the geodetic network adjustment.

  • PDF

Non-destructive testing of historical masonry using radar tomography (레이더 토모그래피에 의한 석조문화재 비파괴 검사)

  • Cha, Young-Ho;Kang, Jong-Suk;Choi, Yun-Gyeong;Suh, Jung-Hee;Bae, Byeong-Seon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-156
    • /
    • 2004
  • GPR(Ground Penetrating Radar) was used for imaging the interior of the historical masonry such as stone pagoda in order to provide the basic information of safely inspection. The scope of the imaging was restricted to the foundation part of stone pagoda that transferred the load of the pagoda to the ground. Kirchhoff migration and traveltime tomography was used for imaging the outer stone and the inside of stone pagoda, respectively. From the migrated images, we could measure the thickness and the shape of the boundaries of the outer stone in the foundation part. From the reconstructed tomograms for the physical model, we could get the GPR propagation velocity distribution and exactly find the position of the air in the model and calculate the average velocity with respect to the different filling materials. The properties and the shape of the interior materials of stone pagoda can be basic informations for the safety inspection.

  • PDF

A Study on the Detection of Small Cavity Located in the Hard Rock by Crosswell Seismic Survey (경암 내 소규모 공동 탐지를 위한 시추공간 탄성파탐사 기법의 적용성 연구)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • For the dectection of small cavity in the hard rock, we investigated the feasibility of crosswell travel-time tomography and Kirchhoff migration technique. In travel-time tomography, first arrival anomaly caused by small cavity was investigated by numerical modeling based on the knowledge of actual field information. First arrival delay was very small (<0.125 msec) and detectable receiver offset range was limited to 4m with respect to $1\%$ normalized first arrival anomaly. As a consequence, it was turned out that carefully designed survey array with both sufficient narrow spatial spacing and temporal (<0.03125 msec) sampling were required for small cavity detection. Also, crosswell Kirchhoff migration technique was investigated with both numerical and real data. Stack section obtained by numerical data shows the good cavity image. In crosswell seismic data, various unwanted seismic events such as direct wave and various mode converted waves were alto recorded. To remove these noises und to enhance the diffraction signal, combination of median and bandpass filtering was applied and prestack and stacked migration images were created. From this, we viewed the crosswell migration technique as one of the adoptable method for small cavity detection.

A Study on Field Seismic Data Processing using Migration Velocity Analysis (MVA) for Depth-domain Velocity Model Building (심도영역 속도모델 구축을 위한 구조보정 속도분석(MVA) 기술의 탄성파 현장자료 적용성 연구)

  • Son, Woohyun;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.4
    • /
    • pp.225-238
    • /
    • 2019
  • Migration velocity analysis (MVA) for creating optimum depth-domain velocities in seismic imaging was applied to marine long-offset multi-channel data, and the effectiveness of the MVA approach was demonstrated by the combinations of conventional data processing procedures. The time-domain images generated by conventional time-processing scheme has been considered to be sufficient so far for the seismic stratigraphic interpretation. However, when the purpose of the seismic imaging moves to the hydrocarbon exploration, especially in the geologic modeling of the oil and gas play or lead area, drilling prognosis, in-place hydrocarbon volume estimation, the seismic images should be converted into depth domain or depth processing should be applied in the processing phase. CMP-based velocity analysis, which is mainly based on several approximations in the data domain, inherently contains errors and thus has high uncertainties. On the other hand, the MVA provides efficient and somewhat real-scale (in depth) images even if there are no logging data available. In this study, marine long-offset multi-channel seismic data were optimally processed in time domain to establish the most qualified dataset for the usage of the iterative MVA. Then, the depth-domain velocity profile was updated several times and the final velocity-in-depth was used for generating depth images (CRP gather and stack) and compared with the images obtained from the velocity-in-time. From the results, we were able to confirm the depth-domain results are more reasonable than the time-domain results. The spurious local minima, which can be occurred during the implementation of full waveform inversion, can be reduced when the result of MVA is used as an initial velocity model.

Inversion of spectral analysis of surface waves with analytic Jacobian (해석적 자코비안을 이용한 표면파 기법의 역산)

  • Ha, Hee-Sang
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.233-245
    • /
    • 2002
  • The spectral-analysis-of-surface-waves (SASW) method is a nondestructive testing method based upon generation and detection of elastic stress waves. SASW is widely used as one of the techniques to determine stiffness profile in engineering geophysics. The essential steps involved are construction of an experimental dispersion curve from data collected in situ, and inversion of the dispersion curve to determine the stiffness profile. The main object of this study is to derive an analytical Jacobian for the inversion. If we set the subsurface to N homogeneous layer, it could save 2N times Jacobian calculation compared to numerical jacobian calculation during inversion. To reconstruct a stiffness profile, constrained damped least square method was applied for the inversion. The algorithm was tested for the numerical data and for the real asphalt and tunnel data, which were able to verify the stiffness profile. The stiffness profile reconstructed by the algorithm showed the possibility to appraise the soundness of tunnel with applications SASW.

  • PDF