Browse > Article
http://dx.doi.org/10.7582/GGE.2022.25.3.099

Applicability Analysis on Estimation of Spectral Induced Polarization Parameters Based on Multi-objective Optimization  

Kim, Bitnarae (Department of Energy & Mineral Resources Engineering, Sejong University)
Jeong, Ju Yeon (Department of Energy & Mineral Resources Engineering, Sejong University)
Min, Baehyun (Department of Climate and Energy Systems Engineering, Ewha Womans University)
Nam, Myung Jin (Department of Energy & Mineral Resources Engineering, Sejong University)
Publication Information
Geophysics and Geophysical Exploration / v.25, no.3, 2022 , pp. 99-108 More about this Journal
Abstract
Among induced polarization (IP) methods, spectral IP (SIP) uses alternating current as a transmission source to measure amplitudes and phase of complex electrical resistivity at each source frequency, which disperse with respect to source frequencies. The frequency dependence, which can be explained by a relaxation model such as Cole-Cole model or equivalent models, is analyzed to estimate SIP parameters from dispersion curves of complex resistivity employing multi-objective optimization (MOO). The estimation uses a generic algorithm to optimize two objective functions minimizing data misfits of amplitude and phase based on Cole-Cole model, which is most widely used to explain IP relaxation effects. The MOO-based estimation properly recovered Cole-Cole model parameters for synthetic examples but hardly fitted for the real laboratory measures ones, which have relatively smaller values of phases (less than about 10 mrad). Discrepancies between scales for data misfits of amplitude and phase, used as parameters of MOO method, and it is in necessity to employ other methods such as machine learning, which can deal with the discrepancies, to estimate SIP parameters from dispersion curves of complex resistivity.
Keywords
spectral induced polarization; multi-objective optimization; Cole-Cole model;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lee, I., Shin, S. Y., Cho, Y. M., Yang, K. A., and Zhang B. T., 2008, Microarray Probe Design with Multiobjective Evolutionary Algorithm. J. KIISE: SA, 35(8), 501-511. (in Korean with English abstract). https://koreascience.kr/article/JAKO200827642579112.page
2 Scott, J. B. T., and Barker, R. D., 2003, Determining pore-throat size in Permo-Triassic sandstones from low-frequency electrical spectroscopy, Geophys. Res. Lett., 30(9). https://doi.org/10.1029/2003gl016951   DOI
3 Vanhala, H., and Peltoniemi, M., 1992, Spectral IP studies of Finnish ore prospects, Geophys., 57(12), 1545-1555. https://doi.org/10.1190/1.1443222   DOI
4 Tamaki, H., Kita, H., and Kobayashi, S., 1996, Multi-objective optimization by genetic algorithms: A review, In Proceedings of IEEE Int. Conference on Evol. Comput, 517-522. https://doi.org/10.1109/icec.1996.542653   DOI
5 Uhlmann, D. R., and Hakim, R. M., 1971, Derivation of distribution functions from relaxation data, J. Physics and Chemistry of Solids, 32(11), 2652-2655. https://doi.org/10.1016/s0022-3697(71)80114-2   DOI
6 Zhdanov, M. S., Burtman, V., Endo, M., and Wilson, G. A., 2012, Laboratory-based GEMTIP analysis of spectral IP data for mineral discrimination, SEG Technical Program Expanded Abstracts, Society of Exploration Geophysicists, 1-5. https://doi.org/10.1190/segam2012-1268.1   DOI
7 Abdel Aal, G. Z., Atekwana, E. A., Rossbach, S., and Werkema, D. D., 2010, Sensitivity of geoelectrical measurements to the presence of bacteria in porous media, J. Geophys. Res.: -Biogeosci., 115(G3). https://doi.org/10.1029/2009jg001279   DOI
8 Deb, K., Pratap, A., Agarwall, A., and Meyarivan, T. A., 2002, A fast and elitist multiobjective genetic algorithm. IEEE Trans. EVolut. Comput, 6(2), 182-197. https://doi.org/10.1109/4235.996017   DOI
9 Binley, A., Slater, L. D., Fukes, M., and Cassiani, G., 2005, Relationship between spectral induced polarization and hydraulic properties of saturated and unsaturated sandstone. Water Resour. Res., 41(12). https://doi.org/10.1029/2005wr004202   DOI
10 Cole, K. S., and Cole, R. H., 1941, Dispersion and absorption in dielectrics I. Alternating current characteristics, J. Chem. Phys., 9(4), 341-351. https://doi.org/10.1063/1.1750906   DOI
11 Fonseca, C. M., and Fleming, P. J., 1995, An overview of evolutionary algorithms in multiobjective optimization, Evol. Comput., 3(1), 1-16. https://doi.org/10.1162/evco.1995.3.1.1   DOI
12 Goldberg, D. E., 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley. https://doi.org/10.5860/choice.27-0936   DOI
13 Hubbard, C. G., West, L. J., Rodriguez-Blanco, J. D., and Shaw, S., 2014, Laboratory study of spectral induced polarization responses of magnetite-Fe2+ redox reactions in porous media, Geophys., 79(1), D21-D30. https://doi.org/10.1190/geo2013-0079.1   DOI
14 Kemna, A., Binley, A., Ramirez, A., and Daily, W., 2000, Complex resistivity tomography for environmental applications, Chem. Eng. J., 77(1-2), 11-18. https://doi.org/10.1016/s1385-8947(99)00135-7   DOI
15 Kim, B., Nam, M. J., Jang, H., Jang, H., Son, J. S., and Kim, H. J., 2017, The Principles and Practice of Induced Polarization Method. Geophys, Geophys. Explor., 20(2), 100-113 (in Korean with English abstract). https://doi.org/10.7582/GGE.2017.20.2.100   DOI
16 Mitani, K., and Nakayama, H., 1997, A multiobjective diet planning support system using the satisficing trade-off method, J. Multi-Criteria Decision Analysis, 6(3), 131-139. https://doi.org/10.1002/(sici)1099-1360(199705)6:3%3C131::aid-mcda129%3E3.0.co;2-s   DOI
17 Lesmes, D. P., and Morgan, F. D., 2001, Dielectric spectroscopy of sedimentary rocks, J. Geophys. Res.- Solid Earth, 106(B7), 13329-13346. https://doi.org/10.1029/2000jb900402   DOI
18 Min, B., Kang, J. M., Chung, S., Park, C., and Jang, I., 2014, Pareto-based multi-objective history matching with respect to individual production performance in a heterogeneous reservoir. J. Pet. Sci. Eng., 122, 551-566. https://doi.org/10.1016/j.petrol.2014.08.023   DOI
19 Min, B., Sun, A. Y., Wheeler, M. F., and Jeong, H., 2018, Utilization of multiobjective optimization for pulse testing dataset from a CO2-EOR/sequestration field. J. Pet. Sci. Eng., 170, 244-266. https://doi.org/10.1016/j.petrol.2018.06.035   DOI
20 Nakayama, H., 1989, Sensitivity and trade-off analysis in multiobjective programming, In Methodology and Software for Interactive Decision Support, Springer, 86-93. https://doi.org/10.1007/978-3-662-22160-0_12   DOI
21 Nakayama, H., 1991, Interactive multi-objective programming and its applications, In Methodology, Implementation and Applications of Decision Support Systems, Springer, 175-197. https://doi.org/10.1007/978-3-7091-2606-6_7   DOI
22 Nakayama, H., Nomura, J., Sawada, K., and Nakajima, R., 1986, An application of satisficing trade-off method to a blending problem of industrial materials, In Large-Scale Modelling and Interactive Decision Analysis, Springer, 303-313. https://doi.org/10.1007/978-3-662-02473-7_30   DOI
23 Nordsiek, S., and Weller, A., 2008, A new approach to fitting induced-polarization spectra, Geophysics, 73(6), F235-F245. https://doi.org/10.1190/1.2987412   DOI
24 Kemna, A., Binley, A., Cassiani, G., Niederleithinger, E., Revil, A., Slater, L., Williams, K. H., Orozco, A. F., Haegel F., Hordt, A., Kruschwitz, S., Leroux, V., Titov, K., and Zimmermann, E., 2012, An overview of the spectral induced polarization method for near-surface applications, Near Surf. Geophys., 10(6), 453-468. https://doi.org/10.3997/1873-0604.2012027   DOI
25 Bucker, M., and Hordt, A., 2013, Long and short narrow pore models for membrane polarization, Geophys., 78(6), E299-E314. https://doi.org/10.1190/geo2012-0548.1   DOI
26 Dias, C. A., 2000, Developments in a model to describe low-frequency electrical polarization of rocks, Geophys., 65(2), 437-451. https://doi.org/10.1190/1.1444738   DOI
27 Gurin, G., Tarasov, A., Ilyin, Y., and Titov, K., 2013, Time domain spectral induced polarization of disseminated electronic conductors: Laboratory data analysis through the Debye decomposition approac, J. Appl. Geophys., 98, 44-53. https://doi.org/10.1016/j.jappgeo.2013.07.008   DOI
28 Mao, D., Revil, A., and Hinton, J., 2016, Induced polarization response of porous media with metallic particles-Part 4: Detection of metallic and nonmetallic targets in time-domain induced polarization tomography, Geophys., 81(4), D359-D375. https://doi.org/10.1190/geo2015-0480.1   DOI
29 Zisser, N., Kemna, A., and Nover, G., 2010, Dependence of spectral-induced polarization response of sandstone on temperature and its relevance to permeability estimation, J. Geophys. Res.: Solid Earth, 115(B9). https://doi.org/10.1029/2010jb007526   DOI
30 Slater, L., Ntarlagiannis, D., Personna, Y. R., and Hubbard, S., 2007, Pore-scale spectral induced polarization signatures associated with FeS biomineral transformations, Geophys. Res. Lett., 34(21). https://doi.org/10.1029/2007gl031840   DOI
31 Revil, A., and Florsch, N., 2010, Determination of permeability from spectral induced polarization in granular media, Geophys. J. Int., 181(3), 1480-1498. https://doi.org/10.1111/j.1365-246x.2010.04573.x   DOI
32 Rucker, C., Gunther, T., and Wagner, F. M., 2017, pyGIMLi: An open-source library for modelling and inversion in Geophys., Computers and Geosciences, 109, 106-123. https://doi.org/10.1016/j.cageo.2017.07.011   DOI
33 Shin, S. W., Park, S., and Shin, D. B., 2015. Development of a new equivalent circuit model for spectral induced polarization data analysis of ore samples, Environ. Earth. Sci., 74, 5711-5716. https://doi.org/10.1007/s12665-015-4588-z   DOI
34 Slater, L. D., and Lesmes, D., 2002, IP interpretation in environmental investigations, Geophys., 67(1), 77-88. https://doi.org/10.1190/1.1451353   DOI
35 Slater, L., Ntarlagiannis, D., and Wishart, D., 2006, On the relationship between induced polarization and surface area in metal-sand and clay-sand mixtures, Geophys., 71(2), A1-A5. https://doi.org/10.1190/1.2187707   DOI
36 Tarasov, A., Titov, K., 2013. On the use of the Cole-Cole equations in spectral induced: Polarization, Geophys. J. Int., 195(1), 352-356. https://doi.org/10.1093/gji/ggt251   DOI
37 Ustra, A., Mendonca, C. A., Ntarlagiannis, D., and Slater, L. D., 2016, Relaxation time distribution obtained from a Debye decomposition of spectral induced polarization data, Geophys., 81(2), E129-E138. https://doi.org/10.1190/geo2015-0095.1   DOI
38 Pelton, W. H., Ward, S. H., Hallof, P. G., Sill, W. R., and Nelson, P. H., 1978, Mineral discrimination and removal of inductive coupling with multifrequency IP, Geophys., 43(3), 588-609. https://doi.org/10.1190/1.1440839   DOI
39 Jang, H., 2019, Layered-earth Resistivity Inversion of Small-loop Electromagnetic Survey Data using Particle Swarm Optimization, Geophys, Geophys. Explor., 22(4), 186-194. https://doi.org/10.7582/GGE.2019.22.4.186   DOI
40 Mansoor, N., and Slater, L., 2007, On the relationship between iron concentration and induced polarization in marsh soils, Geophys., 72(1), A1-A5. https://doi.org/10.1190/1.2374853   DOI
41 Nakayama, H., 1995, Aspiration level approach to interactive multi-objective programming and its applications, In Advances in multicriteria analysis, Springer, 147-174. https://doi.org/10.1007/978-1-4757-2383-0_10   DOI
42 Weigand, M., and Kemna, A., 2016, Debye decomposition of time-lapse spectral induced polarisation data, Comput. Geosci., 86, 34-45. https://doi.org/10.1016/j.cageo.2015.09.021   DOI