• Title/Summary/Keyword: 지구과학 교육

Search Result 1,219, Processing Time 0.029 seconds

ANALYSIS OF ASTRONOMY CONTENT IN NATIONAL SCIENCE CURRICULUM OF KOREA (한국 과학과 교육과정 내 천문학 내용 분석)

  • HYUNJIN SHIM;WOOJIN KWON;DOHYEONG KIM;CHAN-GYUNG PARK;JUNGJOO SOHN;IN-OK SONG;SUNG-HO AN;SUYEON OH;JEONG AE LEE;BEOMDU LIM
    • Publications of The Korean Astronomical Society
    • /
    • v.38 no.3
    • /
    • pp.125-145
    • /
    • 2023
  • This study investigates the integration of astronomy-related topics in the Korean national science curricula spanning from 1945 to 2023. We analyze the placement and extent of astronomy content across different school levels. Astronomy contents in the science curricula have changed in response to social needs (e.g., practical knowledge required for agriculture and fishery) and advancement in astronomical research (e.g., the discovery of exoplanets and the suggestion of new cosmological parameters). Contents addressing the motions of celestial objects and stellar physical properties have remained relatively consistent. In the latest 2022 revised national curriculum, scheduled for implementation in 2024, several elements, such as coordinate systems, have been removed, while the inquiry activities using digital tools are emphasized. The incorporation of the cosmic perspectives in the national curriculum, as well as astronomy education within the context of education for sustainable development, remains limited even in the most recent curriculum. For future life revisions, the active participation of researchers is needed to reflect the latest astronomical research progress and scientific characteristics in the field of astronomy.

Improving the 2022 Revised Science Curriculum: Elementary School "Earth and Universe" Units (2022 개정 과학과 교육과정 개선 방향 고찰 - 초등학교 '지구와 우주' 영역을 중심으로 -)

  • Yu, Eun-Jeong;Park, Jae Yong;Lee, Hyundong
    • Journal of Korean Elementary Science Education
    • /
    • v.41 no.2
    • /
    • pp.173-185
    • /
    • 2022
  • The purpose of this study is to present a reflective review of the earth and universe units from the revised elementary curriculum of 2007-2015 and suggest changes in the 2022 revised curriculum. For this purpose, we conducted an FGI with earth science educators and elementary school teachers regarding the content elements and system, the achievement standards and inquiry activity composition, and the vertical and horizontal curriculum connectivity. Free response and weighted hierarchical analysis items were incorporated into the FGI to ensure logical consistency of the inductively derived improvement. This analysis revealed that the composition of units by grade group had been unevenly distributed among each of the "earth systems" until the 2015 revised curriculum was finalized. Furthermore, the basic concept was still insufficient. We suggest that achievement standards centered on the learning content and skills must state specific scientific core competencies, and inquiry activities should include rigorous critical thinking, student written responses, and student inquiry and analysis. In the hierarchical analysis items, FGI emphasized the inclusion of essential content elements rather than reduction of content elements, understanding-oriented concept learning rather than interest-centered phenomenon learning, basic concept division learning before integration between subjects, and expanding vertical-horizontal connectivity rather than repeating and advancing learning. There is a limit to the generalizing the suggestions proposed in this study to the common opinion of elementary earth science experts. However, since the main vision of the 2022 revised curriculum is to gather opinions through educational entities' participation in a variety of educational subjects, it is suggested that our results should be incorporated as one of the opinions proposed for the 2022 curriculum revision.

An Analysis the Contents Related to a Subject 'Earth and Moon' from Elementary Science Textbooks of the 2009 Revised Curriculum and 2015 Revised Curriculum ('지구와 달' 주제와 관련된 초등학교 2009 개정 과학교과서와 2015 개정 과학교과서 내용 분석)

  • Lim, Cheonghwan;Chae, Donghyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.11 no.3
    • /
    • pp.237-243
    • /
    • 2018
  • The purpose of this study is to analyze the contents related to a subject 'Earth and Mooon' from elementary science textbooks of the 2009 revised curriculum and elementary science textbooks of the 2015 revised curriculum. For the research, the team selected and analyzed the contents of the 'Earth and Moon' unit in the elementary science textbooks of the 2009 revised curriculum and 2015 revised curriculum. As a result of the research, first, there has been no significant change in achievement standards of the curriculum as the science textbook revised from 2009 curriculum to 2015 curriculum. Second, the two curriculum did not differ much in specific textbook contents statement or development, but they showed much change in presentation of exploration activities in curriculum as well as the specific exploration activities presented in the textbooks. Third, compared to science textbooks of the 2009 revision the 2015 revision used more pictures and illustrations. Forth, there have been few changes related to experimental observation, but the activities to organize the unit in 2015 revision have been strengthened compared to the 2009 revision.

Proposal Strategy and Establishment Process of a New Scientific Theory Examined through the Theory of Continental Drift (대륙이동설을 통해 살펴본 새로운 과학이론의 제안전략과 확립과정)

  • Jun-Young Oh;Eun-Ju Lee
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.17 no.1
    • /
    • pp.20-33
    • /
    • 2024
  • The purpose of this study is to examine the scientific activities of scientists justifying Wegener's continental drift in the 20th century, which is explained as a revolutionary process in earth science, and methodologically analyze the strategy of proposing new scientific theories and how the process of theory selection is carried out. Previously, the Earth was a static model and only the vertical movement of the crust was considered. However, the theory of continental drift proposed horizontal movement of the crust as a dynamic model of the Earth, eliminating numerous problems. Therefore, this study seeks to explore the rational activities of numerous scientists until the current plate tectonics theory was formed. Additionally, the theory of continental drift is in conflict with the theory of Earth shrinkage, which is an existing static model. In other words, it deviates from the existing mechanistic world view by presenting a dynamic model in which the Earth is created and changes, as opposed to a static model in which the Earth is already completed, fixed, and unchanged. As a result, old geology was weakened and new geophysics was born. The theory of continental drift and continued exploration by subsequent generations of scholars brought about a revolution in earth science. This can be said to be a good subject of investigation as educational material for various methodologies for students in earth science education, and as educational material for changing students' worldview.

The Development of an Astronomical Observing Education Program for High School Science Club Activities - Inquiring Distances of Open Clusters Using Small Telescopes - (고등학교 과학동아리 천체 관측 교육 프로그램 개발 - 소형 망원경을 활용한 산개성단의 거리 탐구 -)

  • Choi, Dong-Yeol;Yoon, Ma-Byong
    • Journal of the Korean earth science society
    • /
    • v.40 no.3
    • /
    • pp.300-312
    • /
    • 2019
  • The purpose of this study is to develop an astronomical observing education program that enables high school students to inquire the distance of astronomical bodies based on the research methods (observing open clusters and exploring collected big data) using small telescopes and DSLR cameras. After analyzing the 2015 revised science curriculum, we developed science club activity materials and teacher-student learning contents suitable for high school earth science education. A panel of six teachers and researchers of earth science education and astronomy, participated in developing the educational materials. The validity of the program was verified through establishing the agreement among the panels after in-depth discussions and clarifications. The program, developed with 10 lessons in total, showed high satisfactory content validity (CVI, .89) and conformity of school class (Likert's 5 point scales, 4.17). The feedback of the panels and the Delphi analysis continued to improve the quality of the program. The pilot testing result with high school students (N=9) showed that the students' satisfaction rate was high as 4.48. Using the astronomical observational education program of this study is expected to contribute in improving the convergence educational activity, interest, curiosity, and inquiry ability of students in the universe and the astronomical bodies.

Field Application of Earth Systems Education (지구계 교육의 현장적용에 관한 연구)

  • Lim, Eun-kyoung;Hong, Sang-Wook;Jeong, Jin-Woo
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.93-102
    • /
    • 2000
  • The purpose of this study is to investigate Earth Systems Education, its matter and also its possibility of practical application in Korea. Some attempts are made to see the value of the Earth Systems Education. Adopting two kinds of Korean science textbooks of middle school and activity of Earth Systems Education were analyzed. The interview with teachers is implemented for the study on objective, the structure of matter and teaching strategy in Earth Systems Education. The program is given to 96 students(2 classes, the first grade at middle school). To analyze the effect of Earth Systems Education program, students were interviewed by their teacher. The conclusions of this study are as follows: 1. The Earth Systems Education is contributed to the way to enable students to have a cognitive perspective about the earth and to look for the nature. Earth Systems Education is to use interdisciplinary approaches for integration in science. 2. The result of analysis in the contents of Korean science textbooks, the viewpoints about Earth Systems Education were not found, but the accounts about the interactions among subsystems were found. 3. According to the results of interview with teachers, they approve of system approach, the structure of matter and teaching strategy of Earth Systems Education. 4. According to the results of interview with students, they understand the interactions among subsystems which are elements of Earth Systems. As a results, Earth Systems Education is a effective method for informed judgements about Earth and science and manner for work for integration in science curriculum. So Earth Systems Education be applied to science education in Korea.

  • PDF