• 제목/요약/키워드: 증명교육

검색결과 422건 처리시간 0.02초

초등학교 6학년 수학영재들의 기하 과제 증명 능력에 관한 사례 분석 (Mathematically Gifted 6th Grade Students' Proof Ability for a Geometric Problem)

  • 송상헌;장혜원;정영옥
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제16권4호
    • /
    • pp.327-344
    • /
    • 2006
  • 본 연구는 경기도의 A, S시 교육청 과학영재교육원에서 교육을 받고 있는 초등학교 6학년 학생들이 기하 영역의 특정 과제를 해결하는 과정에서 보여주는 증명의 수준과 증명의 구성 요소에 대한 이해 정도를 확인하는 것이다. 이를 위해 동일한 시기에 선발되어 함께 교육프로그램에 참여하고 있는 20명 중 표현력이 우수한 3명의 학생을 담임교수로부터 추천 받아 질적 연구 방법을 통해 분석하였다. 각 학생들에게 Clairaut의 기하 과제 중 하나인 '두 직사각형의 넓이를 합한 것과 동일한 넓이를 갖는 하나의 직사각형을 작도하시오'라는 과제를 제시하고, 그것을 해결하는 과정에서 나타나는 증명의 수준과 증명의 구성 요소에 대한 이해와 관련하여 초등 수학영재들이 보여주는 사고의 특징을 분석하였다. 자료 분석은 Waring(2000)이 제시한 증명 수준과 Galbraith(1981), Dreyfus & Hadas(1987), 서동엽(1999) 등이 제시한 증명의 구성 요소에 기초하여 이루어졌다. 그 결과, 4가지의 의미 있는 결과를 도출하였고 이를 바탕으로 수학영재교육에 주는 시사점을 논의하였다.

  • PDF

기하증명과제에서 나타나는 중학교 1학년 학생들의 증명스키마와 그 특징 (Seventh Graders' Proof Schemes and Their Characteristics in Geometric Tasks)

  • 변규미;장경윤
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제27권2호
    • /
    • pp.191-205
    • /
    • 2017
  • 본 연구는 서울의 C중학교 1학년 학생들이 기하 증명 문제를 해결하는 과정에서 보여주는 증명스키마 유형과 그 특징을 조사한 것이다. 자료 분석은 Harel, & Sowder의 증명스키마 유형에 기초하여 이루어졌다. 연구 결과, 학업성취수준에 따라 학생들이 사용하는 증명스키마 유형에 차이가 있었다. 상위권에서 하위권으로 갈수록 변형적 증명스키마를 사용하는 학생의 비율이 감소하였고 귀납적(측정) 증명스키마를 사용하는 학생의 비율은 증가하였다. 또한 증명과정에서 비형식적인 부호 사용하기, 문제에서 주어진 그림 특정 비율로 인식하기 등 각 증명스키마 유형마다 고유한 특징이 나타났다. 이를 바탕으로 4개의 의미 있는 결론을 추출하였고, 이것이 증명 교수 학습에 주는 시사점을 논의하였다.

수학 교사의 증명과 증명 지도에 대한 인식 - 대학원에 재학 중인 교사를 중심으로 - (Mathematics Teachers' Conceptions of Proof and Proof-Instruction)

  • 나귀수
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권4호
    • /
    • pp.513-528
    • /
    • 2014
  • 본 연구에서는 대학원에 재학 중인 중 고등학교 수학 교사 36명을 대상으로 증명 및 증명 지도에 대한 인식을 조사하였다. 본 연구의 결과, 대부분의 교사들이 증명의 정당화 역할은 잘 인식하지만, 설명(확인), 이해, 발견, 의사소통, 체계화, 수학적 표현의 사용 등으로서의 역할은 미흡하게 인식하며, 많은 교사들이 증명의 조건에 대해 혼란스러운 개념을 가지고 있는 것으로 나타났다. 증명 지도의 이유에 대해서는 논리적 사고력 함양, 수학적 사고력 신장, 명제의 이해, 참인 명제의 확인, 수학의 본질 이해, 수학 지식 증가, 수학적 표현 증진, 수학의 즐거움 경험, 의사소통, 엄밀성 추구, 연계성 추구 등의 다양한 의견을 제시하였다. 증명 지도의 수행과 관련하여, 상당수의 교사들이 실제 증명 지도가 미흡하게 이루어지고 있다고 응답했으며, 학생들의 두려움과 흥미 부족, 증명 지도 시간 부족, 학생 사고수준 미흡, 지도 방식 미흡 등을 증명 지도의 제약 조건으로 언급하였다. 한편, 본 연구에서는 '증명'이라는 수학적 용어가 누락된 2009 개정 수학과 교육과정의 성취기준을 살펴보았다. '${\cdots}$를 이해하고 설명할 수 있다'는 성취기준은 증명 교수-학습과 관련하여 적절하지 않으며, 특히 논리적 추론이나 정당화 과정을 증명과 동일시하는 미흡한 개념을 가지고 있는 교사들에게 더욱 큰 혼란을 줄 위험이 있음을 확인하였다.

Cabri II 를 이용한 증명 교수학습 방법에 관한 연구

  • 류희찬;조완영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제8권
    • /
    • pp.17-32
    • /
    • 1999
  • 본 논문의 목적은 Cabri II 를 이용하여 형식적이고 연역적인 증명수업 방법의 대안을 찾는 데 있다. 형식적인 증명을 하기 전에 탐구와 추측을 통한 발견과 그 결과에 대한 비형식적인 증명 활동을 강조한다. 역동적인 기하소프트웨어인 Cabri II 는 작도가 편리하고 다양한 예를 제공하여 추측과 탐구 그리고 그 결과의 확인을 위한 풍부한 환경을 제공할 수 있으며, 끌기 기능을 이용한 삼각형의 변화과정에서 관찰할 수 있는 불변의 성질이 형식적인 증명에 중요한 역할을 한다. 또한 도형에 기호를 붙이는 활동은 형식적인 증명을 어렵게 만드는 요인 중의 하나인 명제나 정리의 기호적 표현을 보다 자연스럽게 할 수 있게 해 준다. 그러나, 학생들이 증명은 더 이상 필요 없으며, 실험을 통한 확인만으로도 추측의 정당성을 보장받을 수 있다는 그릇된 ·인식을 심어줄 수도 있다. 따라서 모든 경우에 성립하는 지를 실험과 실측으로 확인할 수는 없다는 점을 강조하여 학생들에게 형식적인 증명의 중요성과 필요성을 인식시킬 필요가 있다. 본 연구에 대한 다음과 같은 후속연구가 필요하다. 첫째, Cabri II 를 이용한 증명 수업이 학생들의 증명 수행 능력 또는 증명에 대한 이해에 어떤 영향을 끼치는지 특히, van Hiele의 기하학습 수준이론에 어떻게 작용하는 지를 연구할 필요가 있다. 둘째, 본 연구에서 제시한 Cabri II 를 이용한 증명 교수학습 방법에 대한 구체적인 사례연구가 요구되며, 특히 탐구, 추측을 통한 비형식적인 중명에서 형식적 증명으로의 전이 과정에서 나타날 수 있는 학생들의 반응에 대한 조사연구가 필요하다.

  • PDF

예비교사들을 대상으로 한 증명활동과 반례생성 수행결과 분석 : 수열의 극한을 중심으로 (Preservice Teachers' Writing Performance Producing Proofs and Counterexamples about Limit of Sequence)

  • 이정곤;류희찬
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제21권4호
    • /
    • pp.379-398
    • /
    • 2011
  • 수학교육에서 증명과 반박은 명제가 왜 참인지 혹은 거짓인지를 판별하게 해주고 거짓으로 판명된 명제를 참인 명제로 정교화하는 과정에서 중요한 요소가 된다. 그렇기에 증명활동과 반례생성 두 가지를 함께 학습하는 것은 수학을 배우는 학생들에게 주어진 명제에 내포되어 있고 함축되어 있는 의미에 대한 깊은 통찰력과 명확한 이해를 제공해 줄 수 있다. 최근 많은 논문을 통해 학생들이 수학적 증명에 어려움을 겪고 있다는 증거가 나타나고 있다. 그러나 해당 연구의 대부분은 예비교사들이 수열의 극한 부분에 대하여 증명과 반례를 생산해 내는 능력에만 초점을 맞추고 있다. 따라서 본 연구에서는 예비교사들을 대상으로 하여 수열의 극한 부분에 대한 수행결과 분석을 통하여 증명활동과 반례생성에 대한 능력정도와 접근 방법 등을 알아보고자 한다. 본 연구의 목적은 예비교사들이 반례와 증명을 생성하는 것에 대한 조사에 공헌하는 것이며 예비교사들의 증명과 반례생성 능력 그리고 수학 개념들에 대한 이해의 정도를 식별하고 확인하는 것이다. 또한, 연구를 통하여 참가자들이 주어진 명제들에 대한 답을 작성하는 것에 어려움을 겪는다는 것을 알게 되었고 이를 바탕으로 증명과 반례를 가르치고 배우는 것에 더욱 노력을 기울여야만 한다는 것을 알 수 있었다. 덧붙여, 이 연구의 분석을 통하여 현행 커리큘럼과 교육 방법에 대하여 통찰력을 제공하게 될 수 있을 것이고 예비교사들의 수학과정 학습을 향상시킬 수 있는 방향을 제시한다는 교육적 시사점을 얻을 수 있을 것이다.

  • PDF

코사인 제 2법칙의 다양한 증명방법 분석

  • 권영인;서보억
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권2호
    • /
    • pp.251-263
    • /
    • 2004
  • 피타고라스 정리와 코사인 제 2법칙 사이에는 어떤 관계가 있을까. 현재 우리의 교육과정에서는 피타고라스 정리는 중학교 3학년에서 코사인 제 2법칙은 고등학교 1학년에서 배운다. 그런데, 이 두 가지 수학적 사실 사이에는 밀접한 관계가 있다. 피타고라스 정리의 확장으로서 코사인 제 2법칙을 유도할 수 있다는 것이다. 코사인 제2법칙이 소개되어진 최초의 문헌은 Euclid의 <원론>으로 거슬러 올라간다. <원론>에 소개되어진 코사인 제 2법칙의 증명방법으로 시작하여 수 천년 동안 증명되어온 다양한 증명방법을 소개하고자 한다. 특히, 직각삼각형과 원이라는 큰 틀을 바탕으로 코사인 제 2법칙의 증명 방법에 대해 고찰하고, 그 외 다양한 증명방법을 분석하고자 한다.

  • PDF

확률론적 논증을 통한 정당화 지도에 관한 연구

  • 이경희
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제15권
    • /
    • pp.189-194
    • /
    • 2003
  • 급격하게 변하고 있는 이 사회에 맞춰 수학이 변하고 있다. 이에 따라 학교 수학에서의 증명지도가 변해야할 필요성이 있다. 본 연구에서는 기존의 증명 개념을 아우르는 보다 포괄적인 개념으로써 정당화를 소개하고 정당화 지도 방안을 제안한다. 또, 기존의 형식적이고 엄밀한 연역적 증명과 정당화가 어떻게 다른지 비교해 보고 실제 수업하는데 도움을 줄 수 있도록 활용 방안을 간단하게 제시하고자 한다.

  • PDF

피타고라스 정리의 다양한 증명 방법에 대한 연구

  • 한인기;이경언;홍춘희;최은주
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제13권1호
    • /
    • pp.245-263
    • /
    • 2002
  • 인류 문명의 발달과 함께 폭넓게 활용된 수학적 내용 중의 하나가 피타고라스 정리이다. 특히, 이집트, 메소포타미아, 그리고 중국과 같은 고대 문명의 발생지에서 발굴되는 많은 역사적 기록 속에서 피타고라스 정리에 대한 내용을 찾아볼 수 있다. 피타고라스 정리는 중등학교 수학교육에서 매우 중요한 정리로써, 정리 내용 자체뿐만 아니라 다양한 증명 방법과 증명 과정에 내재된 수학적 아이디어는 수학교육적 측면에서 큰 의미를 가지고 있다. 본 연구에서는 중학교 수학 교과 내용과 관련된 피타고라스 정리의 증명 방법들을 소개하고, 각 증명에 내재된 수학적 아이디어를 기술할 것이다.

  • PDF

중학교 기하에서의 공리와 증명의 취급에 대한 분석 (An Analysis on the Treatment of Axiom and Proof in Middle School Mathematics)

  • 이지현
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제21권2호
    • /
    • pp.135-148
    • /
    • 2011
  • 우리나라 중학교 수학 2에서는 공리의 역할을 하는 명제를 공리라는 명시 없이, 실험에 의해 확인한 옳은 결과로만 받아들여 증명에 사용한다. 그러나 공리 개념은 경험적 입증과 연역적 증명, 직관기하와 논증기하, 증명과 증명이 아닌 것의 차이를 이해하는데 매우 중요한 것이다. 본 연구의 교과서 분석과 영재학생들을 대상으로 한 인식조사 결과는, 공리와 증명의 취급에 대하여 우리나라 교과서가 가진 한계와 문제점을 보여주고 있다.

  • PDF

분석법을 중심으로 한 기하 증명 지도에 대한 연구 (Teaching Geometry Proof with focus on the Analysis)

  • 나귀수
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제19권2호
    • /
    • pp.185-206
    • /
    • 2009
  • 분석법은 증명 방법을 찾을 수 있는 좋은 방법의 하나로 제안되어 왔다. 본 연구에서는 4명의 중학교 1학년 학생들을 대상으로 실제로 분석법을 중심으로 증명을 지도하기 위한 교수 실험을 실시하여, 분석법을 활용하여 증명 방법을 찾고 그것을 증명으로 표현하는 과정에서의 어려움을 살펴보았다. 본 연구 결과, 4명의 학생들은 교수 실험을 통해 분석법을 의미 있게 이해하고 분석법을 활용하여 증명 방법을 찾는 데에 대부분 성공하였다. 한편, 분석법을 중심으로 한 증명 학습에서 학생들이 겪는 어려움은 삼각형의 합동조건의 올바른 탐색, 증명 문제에 제시된 그림의 재해석, 증명 방법의 기호적 표현 등으로 나타났다.

  • PDF