• Title/Summary/Keyword: 증기 터빈

Search Result 308, Processing Time 0.03 seconds

Nuclear Thermal Power Estimation Using the Neuro-Fuzzy Logic (뉴로-퍼지 논리를 이용한 원자력발전소의 열출력 평가)

  • Na, Man-Gyun;Min, Bong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2995-2997
    • /
    • 2000
  • 원자력발전소의 열출력 계산 결과에 가장 큰 영향을 미치는 변수는 주급수 유량이며, 측정방식상의 특성(Venturi Fouling)으로 인해 계산시 과다하게 반영될 소지가 있다 본 연구에서는 이 측정 오차를 최소화하기 위하여 뉴로-퍼지 논리를 이용하여 주급수 유량을 예측한 후 그 결과를 통해 열출력을 재평가하고자 하였다. 즉, 뉴로-퍼지로의 입력 변수(증기발생기 압력 및 수위. 터빈 충동실 압력)들은 모의훈련으로 출력을 상승시키면서 취득한 후 Wavelet Denoising 기법을 이용하여 노이즈를 제거시키고. 뉴로-퍼지 추론 계통의 파라메타들을 최적화시키기 위하여 유전적 알고리듬 및 최소자승법에 의한 Hybrid Learning Rule을 이용하여 학습시켰다. 시뮬레이션을 수행한 결과, 주급수 유량이 양호하게 예측되어, 이 결과를 토대로 열출력을 평가하는데 본 알고리듬의 적용이 성공적임을 입증하였다.

  • PDF

A comparison of steam turbine control systems according to adoption of turbine bypass system (바이패스 시스템 체용 유무에 따른 증기 터빈제어 비교)

  • Choi, I.K.;Kim, J.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2342-2344
    • /
    • 2000
  • Many years ago, most of thermal power plants built in this country were of subcritical pressure, of medium or small size, of constant pressure operation, of drum type steam generator. But, nowadays, almost all of them were of high efficiency, of supercritical pressure, of great capacity(about 500MW), of sliding pressure operation, of once through type steam generator. Presently built once through boiler introduces turbine bypass systems to variable pressure operation which eliminates unexpected materials in boiler tube during startup, minimizes fuel loss by short startup period, eventually improves total efficiency and power system stability

  • PDF

A realization of simulator for reliability verification on medium size steam turbine controller (중용량 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Woo, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2578-2580
    • /
    • 2000
  • A siumlator had been developed and used for reliability verification on medium size steam turbine control programs prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and electrical generator was realized and included in this simulator. Also, many operating data acquired from fields was utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss, windage loss and inertia. A user can decide closing or opening velocity of steam stop valve and steam regulation valve. This simulator is able to generate steam pressure, turbine speed, electrical power, and power system frequency.

  • PDF

A realization of simulator for reliability verification on large steam turbine controller (대용량 증기터빈 제어기의 신뢰성 검증을 위한 시뮬레이터 구현)

  • Choi, I.K.;Jeong, C.K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2138-2140
    • /
    • 2001
  • A siumlator had been developed and will be used for reliability verification on large steam turbine control programs prior to its actual operation in field. A mathematical model on thermal dynamics pertaining to prime mover steam turbine and electrical generator was realized and included in this simulator. Also, many operating data acquired from fields was utilized in order to decide mechanical and thermal dynamic characteristics such as friction loss, windage loss and inertia. A user can decide closing or opening velocity of steam stop valves and steam regulation valves. This simulator is able to generate steam pressure, turbine speed, electrical power, and power system frequency.

  • PDF

A simulation test of lone rejection for steam turbine generator in nuclear power plant (원자력발전소 증기터빈 발전기의 부하차단 모의시험)

  • Choi, In-Kyu;Jeong, Tae-Woon;Lee, Ki-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2301-2303
    • /
    • 2003
  • A steam turnine in thermal/nuclear power plant drives generator and maintains it at rated speed using high temperature and high pressure steam energy. After synchronization in parallel with the power system, generator output increases according as the governor, that is the controller, increases steam flow into turbine. By the way, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip setpoint by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a simulation test of generator load rejection to be implemented on the turbine governor in a 600MW nuclear power plant before its startup.

  • PDF

An Introduction to Test Methods about Steam Valves of Steam Turbines in Power Plants (발전소 운전 중 증기터빈 밸브 시험 방식 소개)

  • Choi, In-Kyu;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1601-1602
    • /
    • 2007
  • Steam stop valves of steam turbine in the power plant are at their 100% position and have no movements. Steam control valves, ie governor valves have no movements either at their controlling position on load limit operation. By the way, if there were no change of operation state, steam valves could be sticked mechanically. Because the governor could fail in protecting and controlling steam turbine in case of emergency conditions, the closing test of 100% valve travel must be accomplished periodically for the purpose of testimony of their good conditions. And, As the difference between steam turbine structures exists according to the manufacturer or generation capacity, both steam stop valves and steam control valves differes in structure and operation method. Therefore, it is essential for not only turbine protection but also control for the control engineers to find out composition of steam valves and method of closing test.

  • PDF

A Simulation Test of Load Rejection for Steam Turbine Generator in a 680MW Nuclear Power Plant (680MW 원자력발전소 증기터빈 발전기의 부하차단 모의시험)

  • Choi, In-Kyu;Jeong, Chang-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1605-1606
    • /
    • 2007
  • An electrical generator in power plant is driven and maintained its speed at rated by steam turbine. By the way, after synchronization in parallel with the power system, as the steam flow into turbine can not be reduced fast even though the electrical load is lost, the turbine gets into dangerous situation due to the increase of its speed. At this time, the duty of the turbine governor is to limit the speed to its overspeed trip set point by stopping the steam flow as soon as possible, the test of which is called load rejection test. It is introduced in this paper for a field simulation test of generator load rejection to be implemented on the turbine governor in a 680MW nuclear power plant before its startup.

  • PDF

Running Bucket Vibration Test of Steam Turbines (증기 터빈 버켓의 회전 진동 시험)

  • 박종포;신언탁;김호종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.96-100
    • /
    • 1997
  • A design modification was made on the 9-th stage wheel dovetail of a high-intermodiate pressure (HIP) turbine rotor for a fossil power plant that necessitates the use of new long-shank buckets for the row. A bucket vibration test is necessary to verify that the new 9-th stage buckets have adequate frequency margin from a nozzle passing frequency when running at speed. A finite element analysis (FEA) has been performed using a commercial S/W to approximately estimate bucket natural frequencies, and thus to help the vibration test. A row of the new buckets has been assembled on the HIP rotor for the vibration tests using dynamic balancing facilities. The tests have been done during deceleration run with air excitation. The test results are compared with the calculation using our empirical formula, and show that the modified design meets the frequency-margin requirements.

  • PDF

Development of Dynamic Model of 680 MW Rated Steam Turbine and Verification and Validation of its Speed Controller (680 MW 증기터빈 동적모델 개발 및 속도제어기 검증)

  • Choi, Inkyu;Woo, Joohee;Son, Gihun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.165-171
    • /
    • 2019
  • The steam turbine used in nuclear power plant is modeled for the purpose of verification of control system rather than the operator education. The valves, reheater and generator are modeled also and integrated into the simulator. After that, the operation data and the designed data such as heat balance diagram are utilized to identify the model parameters. It was evident that model outputs of developed simulator are very close to the measured operating ones. The simulator within dynamic model was used to verify and validate the whole control system together with field instruments. And the target plant has been operating long time.

Development of Blade Surface Modeling System Using Point Data (점 데이터를 이용한 블레이드 곡면 모델링 시스템 개발)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.110-115
    • /
    • 2019
  • Stationary and rotating blades can be found in a steam turbine generator and the airfoil shapes of these blades can be defined by point data from an aerodynamic design system. The main design process of blades is composed of two steps: first, the blade surface is modeled with the point data; and then, the section data is generated which contains composite curves with line segments and arcs for CAE of the blade. The surface is modeled by a curve-net defined by the point data, which may be extended to obtain the section data to model the blade. This paper presents methods for automating the above-mentioned steps, which have been implemented in the commercial CAD/CAM system, Unigraphics, with API functions written in C-language. Finally, the proposed methods have been applied to model the blade of a steam turbine generator.