• Title/Summary/Keyword: 중첩모델

Search Result 391, Processing Time 0.026 seconds

Comparative study of two CAD software programs on consistency between custom abutment design and the output (두 가지 CAD software의 맞춤형 지대주 디자인과 출력물 일치도 비교)

  • Lim, Hyun-Mi;Lee, Kyu-Bok;Lee, Wan-Sun;Son, KeunBaDa
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.3
    • /
    • pp.157-166
    • /
    • 2018
  • Purpose: This study was aimed to compare the consistency between the custom abutment design and the output in two CAD software programs. Materials and Methods: Customized abutments were designed by using 3Shape Dental System CAD software and Delta9 CAD software on a plaster model with implants (CRM STL file). After milling of the designed abutments, the abutments were scanned with a contact method scanner (Test STL file). We overlaid the Test STL file with each CRM STL file by using inspection software, and then compared the milling reproducibility by measuring the output error of the specimens from each CAD software program. Results: The Delta9 showed better milling reproducibility than 3Shape when comparing the milling errors obtained with a full scan of all specimens (P < .05) and also when comparing the axial wall region specifically according to the axial angle. With 0.9 mm marginal radius, the Delta9 showed better consistency between the design and the output than 3Shape (P < .05). While, anti-rotation form had no significant difference in error between the two systems. When cumulative errors were compared, the Delta9 showed better milling reproducibility in almost cases (P < .05). Conclusion: Delta9 showed a significantly smaller error for most of the abutment design options. This means that it is possible to facilitate generation of printouts with reliable reproducibility and high precision with respect to the planned design.

A Study on the Construction of Indoor Spatial Information using a Terrestrial LiDAR (지상라이다를 이용한 지하철 역사의 3D 실내공간정보 구축방안 연구)

  • Go, Jong Sik;Jeong, In Hun;Shin, Han Sup;Choi, Yun Soo;Cho, Seong Kil
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.89-101
    • /
    • 2013
  • Recently, importance of indoor space is on the rise, as larger and more complex buildings are taking place due to development of building technology. Accordingly, range of the target area of spatial information service is rapidly expanding from outdoor space to indoor space. Various demands for indoor spatial information are expected to be created in the future through development of high technologies such as IT Mobile and convergence with various area. Thus this research takes a look at available methods for building indoor spatial information and then builds high accuracy three-dimensional indoor spatial information using indoor high accuracy laser survey and 3D vector process technique. The accuracy of built 3D indoor model is evaluated by overlap analysis method refer to a digital map, and the result showed that it could guarantee its positional accuracy within 0.04m on the x-axis, 0.06m on the y-axis. This result could be used as a fundamental data for building indoor spatial data and for integrated use of indoor and outdoor spatial information.

Effect of mixing method and storage time on dimensional stability of alginate impressions materials (혼합 방법과 보관 시간이 알지네이트 인상재의 체적 안정성에 미치는 효과)

  • Bang, Hyun-Ji;Shim, Hyun-Ah;Cho, Young-Eun;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.86-94
    • /
    • 2020
  • Purpose: The purpose of this study is to compare the volume stability depending on the mixing methods and storage time for the conventional alginate and extended-pour alginate. Materials and methods: An arch-shaped metal model was fabricated, and one conventional alginate and two extended-pour alginates were used to take impressions using different mixing methods (hand and automatic). 120 impressions were taken (40 per each alginate) and stone models were made in accordance with the different storage times (immediate, 2 days, 5 days, and 6 days). The models were scanned with a 3D table scanner and dimensional change was measured by superimposing the scan data. Using SAS 9.4 (SAS Institute Inc., Cary, NC, USA), the general linear model and Tukey's post hoc test was conducted for statistical analysis (P<.001). Results: There was no statistically significant difference in the dimensional accuracy between two mixing methods, and the volume change was minimum when the stone was poured immediately in all groups. Dimensional accuracy showed a statistically significant difference between groups after 2 days of storage, and extended-pour alginate showed higher accuracy after 5 days of storage comparing to conventional one. Large amounts of volume change were showed at 2 - 5 days for conventional alginate and at 5 - 6 days for extended pour alginate. Conclusion: The mixing method of alginate does not affect volume stability. Although extended-pour alginate has better volume stability than conventional alginate for a long time, it is recommended to pour stone as soon as possible.

A Study on the Dynamic Response of Steel Highway Bridges Using 3-D Vehicle Model (3차원(次元) 차량(車輛)모델을 사용(使用)한 강도로교(鋼道路橋)의 동적응답(動的應答) 관(關)한 연구(硏究))

  • Chung, Tae Ju;Park, Young Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1055-1067
    • /
    • 1994
  • This paper is presented to perform linear dynamic analysis of bridges due to vehicle moving on bridges. The road surface roughness and bridge/vehicle interaction are also considered. The bridge and vehicle are modeled as 3-D bridge and vehicle model, respectively. The road surface roughness of the roadway and bridge decks are generated from power spectral density(PSD) function for good road. The PSD function proposed by C.J. Dodds and J.D. Robson is used to describe the road surface roughness for good road condition. The vehicles are modeled as two nonlinear vehicle model with 7-D.O.F of truck and 12-D.O.F of tractor-trailer and the equations of motion of the vehicles are derived using Lagrange's equation. The main girder and concrete deck are modeled as beam and shell element, respectively and rigid link is used between main girder and concrete deck. The equations of motion of the vehicles are solved by Newmark ${\beta}$ method and the equations of the motion of the bridges are solved by mode-superposition procedures. The validity of the proposed procedure is demonstrated by comparing the results with the experimental data reported by the AASHO Road Test. The comparison shows that the agreement between experiment and theory is quite satisfactory.

  • PDF

Fracture Mechanics Approach to X-Ray Diffraction Method for Spot Welded Lap Joint Structure of Rolled Steel Considered Residual Stress (잔류응력을 고려한 압연강 용접구조물의 X-ray 회절법에 의한 파괴 역학적 고찰)

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1179-1185
    • /
    • 2011
  • Cold and hot-rolled carbon steel sheets are commonly used in railroad cars or commercial vehicles such as the automobile. The sheets used in these applications are mainly fabricated by spot welding, which is a type of electric resistance welding. However, the fatigue strength of a spot-welded joint is lower than that of the base metal because of high stress concentration at the nugget edge of the spot-welded part. In particular, the fatigue strength of the joint is influenced by not only geometrical and mechanical factors but also the welding conditions for the spot-welded joint. Therefore, there is a need for establishing a reasonable criterion for a long-life design for spot-welded structures. In this thesis, ${\Delta}P-N_f$ relation curves have been used to determine a long-life fatigue-design criterion for thin-sheet structures. However, as these curves vary under the influence of welding conditions, mechanical conditions, geometrical factors, etc. It is very difficult to systematically determine a fatigue-design criterion on the basis of these curves. Therefore, in order to eliminate such problems, the welding residual stresses generated during welding and the stress distributions around the weld generated by external forces were numerically and experimentally analyzed on the basis of the results, reassessed fatigue strength of gas welded joints.

Estimation of Structural Deformed Shapes Using Limited Number of Displacement Measurements (한정된 계측 변위를 이용한 구조물 변형 형상 추정)

  • Choi, Junho;Kim, Seungjun;Han, Seungryong;Kang, Youngjong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1295-1302
    • /
    • 2013
  • The structural deformed shape is important information to structural analysis. If the sufficient measuring points are secured at the structural monitoring system, reasonable and accurate structural deformation shapes can be obtained and structural analysis is possible using this deformation. However, the accurate estimation of the global structural shapes might be difficult if sufficient measuring points are not secure under cost limitations. In this study, SFSM-LS algorithm, the economic and effective estimation method for the structural deformation shapes with limited displacement measuring points is developed and suggested. In the suggested method, the global structural deformation shape is determined by the superposition of the pre-investigated structural deformed shapes obtained by preliminary FE analyses, with their optimum weight factors which lead minimization of the estimate errors. 2-span continuous bridge model is used to verify developed algorithm and parametric studies are performed. By the parametric studies, the characteristics of the estimation results obtained by the suggested method were investigated considering essential parameters such as pre-investigated structural shapes, locations and numbers of displacement measuring points. By quantitative comparison of estimation results with the conventional methods such as polynomial, Lagrange and spline interpolation, the applicability and accuracy of the suggested method was validated.

Developing a Portable Intelligent Projection System (휴대형 지능형 프로젝션 시스템 개발)

  • Park, Han-Hoon;Seo, Byung-Kuk;Jin, Yoon-Jong;Oh, Ji-Hyun;Park, Jong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.26-34
    • /
    • 2007
  • Intelligent projection system indicates a system that displays desired images on an arbitrary screen in an arbitrary environment using projector without noticeable image distortion. In recent years, projectors have become widespread and ubiquitous due to their increasing capabilities and declining cost. Moreover, the size of projectors is getting smaller and handhold projectors are emerging. Thanks to these advances, the demand for intelligent projection system has been significantly increased and the demand has led to remarkable progress of the related techniques or technologies to intelligent projection system However, there are still some environments (or conditions, mainly dynamic ones) that intelligent projections systems cannot handle and they have limited the application area of intelligent projection systems. This paper exemplifies such environments (e.g. specular screen, dynamic screen) and propose effective solutions (i.e. multiple overlapping projectors, complementary pattern embedding) for thor And the usefulness of the solutions is verified through experimental results and user evaluation. Notice that the environments are considered not simultaneously but independently because it is impossible to consider them simultaneously by simply combining the solutions for each. Acually, a totally different solution would be necessary to consider them simultaneously. Therefore, we expect that the proposed methods would largely extend the application area of intelligent projection systems except for severely arbitrary environment.

UHF Electromagnetic Perturbation due to the fluctuation of Conductivity in a Fault Zone (단층대의 전기전도도 변동에 의한 UHF 전자기장 교란)

  • Lee Choon-Ki;Lee Heuisoon;Kwon Byung-Doo;Oh SeokHoon;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • ULF geomagnetic field anomalies related to earthquakes have been reported and a mechnism that magnetic field variations could be generated by the induced telluric current due to the high frequency fluctuation of conductivity in a fault Bone have been proposed. In this study, we calculated electromagnetic anomalies using a simple fault model and investigated the possibility of significant perturbation. Since low frequency electromagnetic fields are modulated by the high frequency oscillation of conductivity and the modulated fields are concentrated in a narrow ULF band, the electromagnetic fields in ULF band could be perturbed significantly. The amplitude of electromagnetic field anomaly depends on various factors: the geometry and conductivity of fault zone, the magnitude and frequency of conductivity fluctuation, the resistivity structure of crust or mantle, the frequency bandwidth of observational data and so on. Therefore, it is strongly required to reveal the deep resistivity structure of crust a.: well ah the structure of fault zone and to ,select the optimal observation frequency band for the observation of electromagnetic activities related with earthquakes.

Effects of evacuation delay time and fire growth curve on quantitative risk for railway tunnel fire (철도터널 화재 시 피난개시시간지연 및 화재성장곡선이 정량적 위험도에 미치는 영향)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu;Lee, Hoo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.809-822
    • /
    • 2018
  • A quantitative risk assessment has been introduced to quantitatively evaluate fire risk as a means of performance based fire protection design in the design of railway tunnel disaster prevention facilities. However, there are insufficient studies to examine the effect of various risk factors on the risk. Therefore, in this study, the risk assessment was conducted on the model tunnel in order to examine the effects of the evacuation start time delay and the fire growth curve on the quantitative risk assessment. As a result of the analysis of the scenario, the fatalities occurred mainly when escapes in the same direction as the direction of the fire smoke movement. In addition, after the FED exceeded 0.3, the maximum fatalities occurred within 10 minutes. In the range of relatively low risk, distance between cross passages, evacuation delay time and fire growth curve were found to affect the risk, but they were found to have little effect on the condition that the risk reached the limit. Especially, in this study, it was evaluated that the evacuation delay time reduction, fire intensity and duration reduction effect were not observed when the distance between cross passages was more than 1500 m.

The Dosimetric Effects on Scallop Penumbra from Multi-leaf Collimator by Daily Patient Setup Error in Radiation Therapy with Photon (광자선 치료시 Setup 오차에 따르는 Multi-leaf Collimator의 Scallop Penumbra 변화 효과)

  • Yi, Byong-Yong;Cho, Young-Kap;Chang, Hye-Sook
    • Radiation Oncology Journal
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 1996
  • Purpose : To evaluate the clinical implications of scallop penumbra width that comes from multileaf collimator(MLC) effect by the daily routine patient setup error. Materials and Methods : The anales of $0^{circ},{\;}15^{circ},{\;}30^{circ},{\;}45^{circ},{\;}60^{circ},{\;}and{\;}75^{circ}$ inclined -radiation blocked fields were generated using the both conventional cerrobend block and the MLC. Film dosimetry in the phantom were performed to measure penumbral widths of differences between the dose distributions from the cerrobend block and those of respect the MLC. The patient setup error effect on scallop penumbra was simulated with respect to the table of setup error distribution. Same procedures are repeated for the cerrobend block generated field. Results : There are penumbral widths of to 3mm difference between the dose distributioins from two kinds of field shaping tools, the conventional block and the MLC with 4mm setup error model and resolution of 1cm leaf at the isocenter. Conclusion : We need not additive margin for MLC, if planning target volume is selected according to the recommendation of ICRU 50. For particular cases, we can include the target volume with less than 3mm additive margin.

  • PDF