• Title/Summary/Keyword: 중공재

Search Result 86, Processing Time 0.022 seconds

Characterization of FeCo Magnetic Metal Hollow Fiber/EPDM Composites for Electromagnetic Interference Shielding (FeCo 자성 금속 중공형 섬유 고분자 복합재의 전자파 차폐 특성 연구)

  • Choi, Jae Ryung;Jung, Byung Mun;Choi, U Hyeok;Cho, Seung Chan;Park, Ka Hyun;Kim, Won-jung;Lee, Sang-Kwan;Lee, Sang Bok
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.333-339
    • /
    • 2015
  • Electromagnetic interference shielding composite with low density ($1.18g/cm^3$) was fabricated using electroless plated FeCo magnetic metal hollow fibers and ethylene propylene diene monomer (EPDM) polymer. Aspect ratio of the fibers were controlled and their hollow structure was obtained by heat treatment process. The FeCo hollow fibers were then mixed with EPDM to manufacture the composite. The higher aspect ratio of the magnetic metal hollow fibers resulted in high electromagnetic interference shielding effectiveness (30 dB) of the composite due to its low sheet resistance (30 ohm/sq). The enhanced electromagnetic interference shielding effectiveness was mainly attributed to the formation of conducting network over the percolation threshold by high aspect ratio of fibers as well as an increase of the reflection loss by impedance mismatch owing to low sheet resistance, absorption loss, and multiple internal reflections loss.

Analysis of Reinforcement Effect of Hollow Modular Concrete Block on Sand by Laboratory Model Tests (실내모형실험을 통한 모래지반에서의 중공블록 보강효과 분석)

  • Lee, Chul-Hee;Shin, Eun-Chul;Yang, Tae-Chul
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.7
    • /
    • pp.49-62
    • /
    • 2022
  • The hollow modular concrete block reinforced foundation method is one of the ground reinforcement foundation methods that uses hexagonal honeycomb-shaped concrete blocks with mixed crushed rock to reinforce soft grounds. It then forms an artificial layered ground that increases bearing capacity and reduces settlement. The hollow modular honeycomb-shaped concrete block is a geometrically economical, stable structure that distributes forces in a balanced way. However, the behavioral characteristics of hollow modular concrete block reinforced foundations are not yet fully understood. In this study, a bearing capacity test is performed to analyze the reinforcement effectiveness of the hollow modular concrete block through the laboratory model tests. From the load-settlement curve, punching shear failure occurs under the unfilled sand condition (A-1-N). However, the filled sand condition (A-1-F) shows a linear curve without yielding, confirming the reinforcement effect is three times higher than that of unreinforced ground. The bearing capacity equation is proposed for the parts that have contact pressure under concrete, vertical stress of hollow blocks, and the inner skin friction force from horizontal stress by confining effect based on the schematic diagram of confining effect inside a hollow modular concrete block. As a result of calculating the bearing capacity, the percentage of load distribution for contact force on the area of concrete is about 65%, vertical force on the area of hollow is 16.5% and inner skin friction force of area of the inner wall is about 18.5%. When the surcharge load is applied to the concrete part, the vertical stress occurs on the area of the hollow part by confining effect first. Then, in the filled sand in the hollow where the horizontal direction is constrained, the inner skin friction force occurs by the horizontal stress on the inner wall of the hollow modular concrete block. The inner skin friction force suppresses the punching of the concrete part and reduces contact pressure.

Development of Prefabricated Voided-Slab Bridge Using PSC-I Girders (프리캐스트 I형 거더를 이용한 조립식 중공슬래브교 개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.742-752
    • /
    • 2017
  • The bridge type of steel concrete composite rahmen or pre-flex has been applied where a lower depth girder is required due to vertical clearance restrictions caused by the crossing of rivers and roads. On the other hand, because these types are not only complicated to manufacture and construct, but also expensive, void slab bridges may be an alternative. In this study, prefabricated PSC-I shape girder was used to make a void slab and all procedures for bridge development, such as analysis, design, fabrication, and real-scale test, were included in the scope of research. The results of this study will provide sufficient background data to be applied to the field and the structural safety has been verified through experiments.

Flexural Behaviors of High Performance Hollow Core Slabs with Upper Strands (상부강선을 갖는 고성능 중공슬래브의 휨거동)

  • 김인규;박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • Hollow core slabs generally have not been used for a bridge or a parking slab in Korea. In this study, high performance hollow core slabs, which have been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were pre-tensioned with ten strands of 1/2 inch diameter at the lower of slab and four strands of 1/2 inch diameter at the upper of slab, and cast with 80 mm deep topping concrete. Tested hollow core slabs showed ductile failure behaviors which were conformed to the current Ultimate Strength Design Method for a span of 10m up to the live load of 1,000 kgf/㎡. The rectangular md round shear cotters which were used for the composite action between precast and topping concrete, developed sufficient strengths because cracking, even micro had not been developed at the end of slabs up to the pure flexural tensile failure.

Study of Separation of carbon dioxide through hollow fiber membrane contactor (중공사막 접촉장치를 통한 이산화탄소 분리에 관한 연구)

  • 염봉열;김민수;이용택;박유인;이규호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.61-64
    • /
    • 1997
  • 1. 서론 : 적절한 이산화탄소의 분리는 지구온난화의 가속현상을 늦출 수 있을 뿐만 아니라 각종 탄화수소가스의 원료로 분리 정제된 이산화탄소를 재이용할 수 있으므로 경제적으로 매우 중요하다. 이산화탄소 분리에 사용되던 기존 공정들의 단점을 보완할 수 있는 대체방안으로 최근에 개발되기 시작한 것이 소수성의 다공성 고분자 분리막(hydrophobic porous ploymeric membrane) 방법인데, 이는 모듈의 유효 막 표면적이 상대적으로 크고 기체와 액체의 흐름을 독립적으로 제어할 수 있으므로 범람 등의 현상이 없으나 막 자체의 저항이 비교적 큰 단점을 가지고 있다. Qi와 Cussler는 이러한 특성을 가지는 중공사막 모듈에서의 기-액 흐름에 대한 물질전달 상관관계식을 얻었으며[1], Karoor 등은 여러 가지 중공사막 모듈을 사용하여 순수물과 diethanolamine(DEA) 등의 흡수제에 대한 이산화탄소의 물질전달 거동을 수치모델과 실험을 통하여 고찰하였다[3]. 또한 중공사막 접촉기의 실제적 응용에 대하여 Matsumoto 등은 화력발전소에서 발생하는 연소가스 내의 이산화탄소 흠수에 대한 연구를 수행하였다[4]. 본 연구에서는 중공사막 접촉장치를 사용하여 흡수제를 순수물과 탄산칼륨($K_2CO_3$)을 사용했을 경우의 이산화탄소의 분리 거동을 수치모델과 실험을 통하여 고찰하였다. 수치모델의 경우 이전까지의 연구가 반응이 없는 경우나 반응식을 간략화시킨 경우에 한정되었는데 비하여, 반으이 있는 경우 각각의 반응물질들의 거동을 고려한 반응식을 유도하여 해를 구하고자 하녔다.

  • PDF

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.

Heat Treatment of Dimension Lumber and Roundwood Used for Hanok Above $170^{\circ}C$

  • Kang, Ho-Yang
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.6
    • /
    • pp.499-504
    • /
    • 2010
  • Korean traditional buildings, Hanok, are mostly constructed with dimension lumbers and roundwoods. They are hardly kiln-dried without severe defects, thus usually air-dried from some months to an year. Dimension lumbers and roundwoods were heat-treated above $170^{\circ}C$ and drying defects were examined. Temperature rising curves of all dimension timbers used for this study show one or two deflection points. The time when the temperature at 37.5mm depth reached at $100^{\circ}C$ for spruce dimension heat-treated at $170^{\circ}C$ was twice longer than that heat-treated at $190^{\circ}C$. There were many internal checks in roundwoods of $148mm{\Phi}$, while surface checks were apparently closed at the end of heat treatment. The drying time of $300{\times}300mm$ dimensions with 65mm hole was shorter than that without hole by half.

  • PDF

RO분리막 공정에서 온도와 압력이 유량에 미치는 효과

  • 박영규;오세현;오호영;장일헌;송석룡
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.77-79
    • /
    • 1994
  • 폐수와 하수처리에서 양질의 재생수를 얻기위하여 고분자막을 이용한 폐수재활용에서 나타나는 공정상 문제점을 고찰하였다. 본 연구에서 사용한 폐수는 처탑공장의 폐수로서 RO막을 이용한 폐수의 재이용공정개발을 목표로하고 있으며, pilot실험을 토대로 폐수의 적용성 검토가 행하여졌다. 사용된 막의 종류는 중공사막형의 막으로서 막내의 층류 흐름의 응용은 투석막, 기체분리, 중금속의 추출등 상당한 관심속에 있다. 여기서 중공사막과 같은 관(Cynlindrical)형의 막 구조에서 물질과 에너지 이동현상은 막분리공정을 이해하는 중요한 물리적고찰로서 막투과도를 높힐수 있을 뿐만 아니라 운전온도에 의해 중공사막 RO막내의 유량변화에 주요한 변수가 될 수 있다.

  • PDF

The Study on Improvement of Acoustic Performance for Automobile Sound-absorbing Materials Using Hollow Fiber (중공 섬유를 이용한 자동차 흡음재 성능 향상 연구)

  • Lee, Jung-Wook;Lee, Su-Nam;Shim, Jae-Hyun;Jung, Pan-Ki;Lee, Won-Ku;Bang, Byoung-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.850-857
    • /
    • 2011
  • Generally, sound-absorbing materials in vehicles are used for giving the comfort to passengers by reducing noise while driving. Materials of which targets are light weight, high performance, eco friendliness and recycling have been developed recently. In this study, sound-absorbing materials using PET(polyethylene terephthalate) hollow fibers to achieve the light weight and the high sound absorption performance are developed, and then evaluated to meet a requirement for the automotive components. The test results show that the acoustic performances of developed products having new fiber structure are better than those of the conventional product.