Browse > Article

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column  

Won, Deok-Hee (고려대학교 건축.사회환경공학과)
Han, Taek-Hee (서울메트로 기술연구소)
Lee, Gyu-Sei (선문대학교 토목공학과)
Kang, Young-Jong (고려대학교 건축.사회환경공학과)
Publication Information
Journal of Korean Society of Steel Construction / v.22, no.2, 2010 , pp. 139-150 More about this Journal
Abstract
Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.
Keywords
confined concrete; column; fire resistance; hollow ratio; cover concrete;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yang, Y.F., Han, L.H. (2008) Concrete-filled double-skin tubular columns under fire. Magazine of Concrete Research, Vol.60, No.3, pp.211-222.   DOI   ScienceOn
2 Park, S.H. Song, K.C. Chung, S.K. Min, B.Y. and Choi, S.M (2009) An Experimental Study on the Fire Resistance of Concrete-filled Double Skin Tubular Columns. The 5th International Symposium on Steel Structures, pp,209-307.
3 Shakir-Khalil, H. and Mouli, S. (1987) Composite columns of concrete steel tubes. Fire Proc. Conference on the Design and Construction of Non Conventional Structures. pp.73-82.
4 Wei, S., Mau., S,T., Vipulanandan. C., Mantrala, S,K. (1995) Performance of new sandwich tube under axial loading: Analysis. Journal of Structural Engineering, Vol.121, No. 12, pp.1815-1821.   DOI   ScienceOn
5 Wei, S., Mau., S,T., Vipulanandan. C., Mantrala, S,K. (1995) Performance of new sandwich tube under axial loading: Analysis. Journal of Structural Engineering. Vol.121, No. 12, pp.1806-1814.   DOI   ScienceOn
6 Zha, X.X. (2002) FE analysis of fire resistance of concrete filled CHS column. Journal of Constructional Steel Research, Vol.59, pp.769-779.
7 Zhao, X.L. and Grzebieta, R. (2002) Strength and ductility of concrete filled double skin (SUS inner and SHS outer) tubes. Thin-Walled Structures, Vol.40, pp.799-213.
8 Zicherman, J. (1996) Fire Safety in Tall Building. McGraw Hill Inc., pp.229-292.
9 Lie, T. T. (1989) A, Proceedings to Caleulan Fire Resistance for Stuructual Members, Fire and Material Vol.5 No.1, pp.40-48.
10 Eurocode 2 (2003) Design of concrete structures - Part 1.2 : General rules - Structural fire design.
11 한택희, 한상윤, 강영종 (2007) 내부 구속 중공 철근 콘크리트 부재의 비선형 재료 모델 개발, 대한 토목학회 논문집, 제27권 제1A호, pp.11-26.
12 Eurocode 3 (2005) Design of steel structures Part 1.2 : General rules Structural fire design. EN 1993 1-2.
13 Kang, Y.J. and Han, T.H. (2005) Behavior of an internally confined Hellow R.C pier. Proc. Review China Japan Symposium on Structural Steel Construction, KSSC, pp.91-97.
14 KoJur, V.K.R. Hshv, L.V. and Green, M.E. (2006) Experimental evaluation of the fire behavior of insulation filter reinforced polymer strengthened reinforced complete columns, Fire Safety Journal, Vol.II, No.7, pp.517-567.
15 윤현도, 김규용, 한병찬(2002) 고온을 받은 고강도 콘크리트의 강도 특성, 한국콘크리트학회논문집, 한국콘크리트학회, 제14권, 제5호, pp.698-707.   과학기술학회마을
16 Bratina, S., Cas, B., Saje, M., and Planinc, I. (2008) Numerical modelling of behaviour of reinforced concrete columns in fire and comparison with Eurocode 2. International Journal of Solids and Structures, Vol. 42, No. 21-22, pp.5715-5733.
17 Commties Euro-International Du Beton (1993) Fire Design of Concrete Structures-in accordance with CEB/FIP Model Code 90 (Final Draft), CEB Bulletin D'.
18 건교부고시(2005-122호) 내화구조의 인정 및 관리 기준.
19 고려대학교(2005) 강관 삽입 중공 R.C 고교각 개발.
20 류동우, 송영찬, 이종찬, 이세현, 민병렬(2008) 재하.비재하 시험에 따른 고강도 콘크리트를 사용한 철근콘크리트 기둥 부재의 내화성능 평가, 대한건축학회 논문집, 대한건축학회, 제24권, 제6호, pp.59-68.
21 이상호(2003) 철근콘크리트 부재의 내화성능 연구, 한국연구재단.
22 임석빈, 한택희, 한상윤, 강영종(2006) 구속 조건에 따른 콘크리트 응력-변형률 관계, 대한토목학회논문집, 대한토목학회, 제26권, 제 4A호, pp.743-752.
23 정경수, 최성모, 김동규(1997) 콘크리트충전 강관기둥의 내화특성에 관한 이론적 연구, 한국강구조학회논문집, 한국강구조학회, 제9권 제4호, pp.649-658.
24 한국콘크리트학회(2007) 콘크리트 구조설계기준 해설.
25 한택희, 김홍중, 김영종, 강영종(2006) 원형 강관 삽입 중공 RC기둥의 내부구속 효과 연구, 대한토목학회눈문집, 대한토목학회, 제26권 제4호, pp.565-575.