• Title/Summary/Keyword: 주파수 다이버시티

Search Result 206, Processing Time 0.022 seconds

Spectrum Sensing with Diversity Combining Technique in Cognitive Radio (인지 라디오 시스템에서 다이버시티 기법을 사용한 스펙트럼 검출)

  • Lee, So-Young;Kim, Eun-Cheol;Cha, Jae-Sang;Park, Yong-Woon;Hwang, Sung-Ho;Kim, Ki-Hong;Min, Joon-Ki;Kim, Seong-Kweon;Cho, Ju-Pill;Kim, Jin-Young;Kang, Jang-Mook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.179-185
    • /
    • 2009
  • Cognitive radio (CR), which is proposed as a technology that utilizes the frequency resources effectively, has studied to relive scarcity of the frequency resources. CR provides opportunistically unused frequency to the secondary user when the primary user is not detected. Spectrum sensing is the most important technology to detect primary user. However, in the wireless channels, according to the effect of multipath fading channel, spectrum sensing performance is compromised. Therefore, in this paper, we apply diversity scheme that is a useful technique for combating multiple fading in wireless communications. There are several classes of diversity scheme, which are time diversity, antenna diversity, muitipath diversity, frequency diversity, and so on. In this paper, we adopt antenna diversity that is a kind of space diversity. By using the proposed method, we can overcome fading effect and improve spectrum sensing performance.

  • PDF

Analysis of BER According to Spatial and Frequency Diversity Gain in Uplink SC-FDMA with SIMO Systems (상향링크 SIMO 시스템에서 공간 및 주파수 다이버시티 이득에 따른 SC-FDMA의 BER 성능 분석)

  • Lee, Jin-Hui;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.9
    • /
    • pp.535-547
    • /
    • 2014
  • We investigate BER (Bit Error Ratio) performance according to the gain of spatial and frequency diversities in uplink SC-FDMA of SIMO (Single Input Multiple Output) systems. The main results of the analysis in this paper are as follows. First, we prove that performance of integrated system for considering spatial and frequency diversity combining in parallel is equivalent with the performance of sequential system for performing diversity combining in sequence. By signal modeling, it is demonstrated that the performances of both systems are the same when the frequency diversity combining technique of the sequential system is equal to diversity combining technique of the integrated system, and spatial diversity combining technique of the sequential system is performed as MRC in advance of frequency diversity combining. Secondly, it is found that effect on the BER performance is different according to the gain of spatial and frequency diversities, respectively. The frequency diversity gain increases by increasing the number of subcarrier. It might affect the performance improvement of high SNR(Signal to Noise Ratio) while it maintains gap between performances of ZF(Zero Forcing) and MMSE(Minimum Mean Square Error) in frequency diversity combining schemes. Also, spatial diversity gain increases as the number of receiving antennas increases. It means that it can reduce performance gap between ZF and MMSE in frequency diversity combining schemes by increasing the number of receiving antennas. In addition, it might affect the performance improvement of the whole SNR. Finally, through the analysis of performance according to the spatial diversity gain, the performance of ZF in frequency diversity combining is equal to the MMSE if the number of receiving antennas is 6 or more.

A Multicarrier CDMA System for Multipath and Doppler Diversity (다중경로 및 도플러 다이버시티를 위한 멀티캐리어 CDMA 시스템)

  • Park Hyung-Kun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.29-37
    • /
    • 2005
  • One of the principal disadvantages of multicarrier modulation technique is the sensitivity to the frequency offset introduced by Doppler shift. This frequency offset introduces inter-carrier interference (ICI) among the multiplicity of carriers in the multicarrier modulated signal. However, Doppler spread induced by temporal channel variations can Provide another means for diversity. In this paper, we propose a modified multicarrier code division multiple access (CDMA) system to exploit Doppler diversity as well as multipath diversity. The key work of our framework is a canonical time-frequency-based decomposition of the mobile wireless channel into series of independent fading channel. The decomposition naturally leads to a time-frequency generalization of the Rake receiver that exploits both multipath and Doppler diversity.

Spatial and Frequency Diversity Combining Order in Uplink SC-FDMA with SIMO Systems (상향링크 SIMO 시스템에서 공간 및 주파수 다이버시티 컴바이닝 순서에 따른 SC-FDMA 성능 분석)

  • Lee, Jin-Hui;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.432-440
    • /
    • 2015
  • We investigate BER performance according to the order of spatial and frequency diversity combining in uplink SC-FDMA of SIMO systems. It is found that frequency diversity combining (FDC) after spatial diversity combining (SDC) is better than the reverse order combing in all SNR (Signal to Noise Ratio) range. Also, it is shown that FDC after SDC requires less computational complexity than the reverse order combining.

On the Application of Cyclic Delay Diversity to Distributed SC-FDMA Systems (분산할당 SC-FDMA 시스템에서의 순환지연 다이버시티의 적용)

  • Rim, Min-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.49-57
    • /
    • 2008
  • In distributed-allocation OFDMA systems, cyclic delay diversify can improve the system performance by increasing frequency diversity. However, applying cyclic delay diversify to distributed-allocation SC-FDMA systems can affect the performance in two contrary ways: positive effect due to increased frequency diversity and negative effect caused by increased frequency selective channels. This paper addresses these two contrary effects and discusses about when cyclic delay diversity is useful and when it is not very useful for distributed-allocation SC-FDMA systems.

Performance of analysis UWB system using MIMO-OFDM and frequency diversity (STBC-OFDM과 주파수 다이버시티를 적용한 UWB 시스템이 성능분석)

  • Choi, Jung-Hun;Han, Tae-Young;Kim, Nam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.423-428
    • /
    • 2004
  • In this paper, STBC (Space Time Block Code) is applied to the WB system and frequency repeated diversity is used to get the 4-th order space time diversity gain. The performance of が STDB-OFDM system is analyzed by computer simulation. As a result of simulation, proposed W system can reduce the complexity that is introduced by increasing number of transmit antenna and show the same performance of 4 antennas with only using 2. Proposed system shows the enhancement of 7.1 dB compared to the general UWB OFDM and 1.9 dB compared to UWB STBC-OFDM.

  • PDF

A study on performance enhancement of cyclic delay diversity OFDM system using frequency diversity (주파수 다이버시티를 이용한 순환 지연 다이버시티 OFDM 시스템의 성능 향상 연구)

  • Jung, Hyeok-Koo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.3A
    • /
    • pp.135-140
    • /
    • 2012
  • This paper proposes a technology for performance enhancement of cyclic delay diversity OFDM system using frequency diversity. The frequency diversity in an OFDM system can be done as repetitive transmission of the same symbol on uncorrelated subcarrier, this makes modulation level larger according to the number of repetitive transmission for the comparison with the traditional transmission system. This technique, like cyclic delay diversity, has a benefit which it does not need any special subsidiary hardware irrespective of the increase of the number of transmitter. For the performance comparison, we simulate the proposed algorithm in multiple input single out channel environment, it shows a better performance enhancement in low dense modulation level in comparison with the traditional cyclic delay diversity OFDM system.

Transmit Diversity Using Windowing Scheme in OFDM System (OFDM 시스템에서 윈도윙 기법을 이용한 송신 다이버시티)

  • Kim, Yong-June;Rim, Min-Joong;Lim, Dae-Woon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.871-877
    • /
    • 2007
  • In this paper, we propose a new transmit diversity scheme using window functions in orthogonal frequency division multiplexing (OFDM) system. Transmit diversity of the scheme is varied with window functions and the condition of the window function to maximize transmit diversity is derived. The proposed scheme can be considered as a generalization of the diversity schemes such as cyclic delay diversity (CDD), orthogonal transmit diversity (OTD), and frequency switched transmit diversity (FSTD).

Communication performance of selective combining frequency diversity with maximum likelihood estimation in underwater multipath frequency selective channels (수중 다중경로 주파수 선택적 채널에서 최대우도추정을 적용한 선택적합성 주파수 다이버시티의 통신 성능)

  • Lee, Chaehui;Park, Kyu-Chil;Park, Jihyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.143-149
    • /
    • 2022
  • In this paper, we evaluate the underwater frequency diversity communication performance of Selective Combination (SC) using Maximum Likelihood Estimation (MLE). In an underwater multipath frequency selective channel, destructive interference fading due to delay spread of a received signal affects the increase in error and Signal to Noise Ratio (SNR) variability of an underwater acoustic communication. Selective Combination frequency diversity using a single sensor is applied as a transmission performance improvement technique according to the frequency selectivity of a channel. In the sea experiment applying MLE for SC decision value extraction, we evaluate the performance of SC frequency diversity and MLE-SC frequency diversity. In experiment result, we confirm through experiment that the Bit Error Rate (BER) is relatively lower when the decision value extracted through MLE-SC is applied than when the SC decision value is fixed.

A Study on the Relation Between Frequency Diversity and Inter Code Interference in the Multi-rate MC-CDMA system (Multi-rate MC-CDMA시스템에서의 코드 간 간섭과 주파수 다이버시티와의 관계에 대한 연구)

  • Lee, Kyu-Jin;Lee, Kye-San;Kim, Jin-Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.5
    • /
    • pp.131-138
    • /
    • 2008
  • The channel parameters such as RMS delay spread and Doppler frequency have an effect on performance of system. This paper investigates the effect between the Inter-Code Interference (ICI) and the frequency diversity gain in the multi-rate MC-CDMA system. The multi-rate MC-CDMA system has achieved the more variable data rate than the MC-CDMA and moreover it has the better performance than the OFDMA system, because it has achieved the frquency diversity gain. However, the frequency diversity gain and ICI have a trade-off relationship by using the spreading code. Therefore, we have improved the system performance by efficient choice of system parameters. In order to evaluate the effectiveness of the frequency diversify gain and the ICI effect, we perform simulations by altering the Doppler frequency and RMS delay spread.

  • PDF