• Title/Summary/Keyword: 주제분류

Search Result 993, Processing Time 0.026 seconds

A Study on the Improvement of Accessibility to Public Records: Based on the Construction of Subject Thesaurus for Presidential Archives (공공기록에 대한 접근성 제고 방안에 관한 연구 - 대통령기록관 주제시소러스 개발 사례를 중심으로 -)

  • Rieh, Hae-Young;Kwon, Yongchan;Seong, Hyojoo;Yoo, Byonghoo
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.14 no.4
    • /
    • pp.127-151
    • /
    • 2014
  • To search based on the functional classification or provenance is not easy for users, and the key word-based information retrieval presents only simple words matching with the title of the records. The Presidential Archive of Korea developed a subject classification scheme to improve the convenience of searching for various records and came up with a subject thesaurus based on the scheme that utilizes the terms appearing on the title of the records and the terms used by the users who searched the portal or requested information disclosure. This research presents the development process of subject thesaurus. It also presents the utilization methods for records management work and services.

Reducing Toxic Response Generation in Conversational Models using Plug and Play Language Model (Plug and Play Language Model을 활용한 대화 모델의 독성 응답 생성 감소)

  • Kim, Byeong-Joo;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.433-438
    • /
    • 2021
  • 대화 시스템은 크게 사용자와 시스템이 특정 목적 혹은 자유 주제에 대해 대화를 진행하는 것으로 구분된다. 최근 자유주제 대화 시스템(Open-Domain Dialogue System)에 대한 연구가 활발히 진행됨에 따라 자유 주제를 기반으로 하는 상담 대화, 일상 대화 시스템의 독성 발화 제어 생성에 대한 연구의 중요성이 더욱 커지고 있다. 이에 본 논문에서는 대화 모델의 독성 응답 생성을 제어하기 위해 일상 대화 데이터셋으로 학습된 BART 모델에 Plug-and-Play Language Model 방법을 적용한다. 공개된 독성 대화 분류 데이터셋으로 학습된 독성 응답 분류기를 PPLM의 어트리뷰트(Attribute) 모델로 활용하여 대화 모델의 독성 응답 생성을 감소시키고 그 차이를 실험을 통해 정량적으로 비교한다. 실험 결과 어트리뷰트 모델을 활용한 모든 실험에서 독성 응답 생성이 감소함을 확인하였다.

  • PDF

Suggesting an Analytico-Synthetic Classification System for Classifying Materials by and about Shakespeare or His Works (Shakespeare 관련자료 분류상의 문제점과 개선방안)

  • 오동근;황일원
    • Journal of Korean Library and Information Science Society
    • /
    • v.34 no.1
    • /
    • pp.217-237
    • /
    • 2003
  • This study investigates the general problems in classifying materials by and related to Shakespeare in the university libraries and suggests a new analytico-synthetic system based on the analysis on the related classes on the major classification systems including DDC, LCC, CC, etc. and other studies and hompages In the area or Shakespeare study. New system consists of four facets, and Its facet formula is “generalities + form + works + language,” each of which includes Its own foci.

  • PDF

SF&Action genre TV animation theme song lyrics feature and activity verification (SF&액션 장르 TV 애니메이션 주제가 가사의 특징과 활동성 검증)

  • Chung, jae-youn
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.57-58
    • /
    • 2019
  • SF&액션 장르 애니메이션 주제가 가사를 메시지의 유형에 따라 분류하고 Song form 별 가사의 역할과 내포된 활동성 표현 포함 비율의 서열을 생성했다. 3가지 세부 장르의 주제, 소재, 캐릭터 유형, 주제가의 유의미한 상관성을 도출하고 장르의 영향력 안에서 자유로울 수 없는 주제가의 제한적 창작형태를 확인하였다.

  • PDF

Applying Labeled LDA to Author Keywords Recommendation (Labeled LDA를 이용한 저자 주제어 추천)

  • Bong, Seong-Yong;Hwang, Kyu-Baek
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.385-389
    • /
    • 2010
  • 논문에 부여되는 저자 주제어(author keyword)는 논문을 분류 및 검색하는데 활용될 수 있다. 이렇게 주제어를 부여할 때 자동으로 저자 주제어를 추천한다면 사용자에게 편리성을 제공하고 저자가 직접 부여한 저자 주제어 이외에 추가적으로 주제어가 있는지도 확인할 수 있어 유용하다. 본 연구에서는 논문에 달려있는 다수의 주제어 중 하나의 주제어를 선별하여 Labeled LDA를 이용해 주제어와 초록(abstract)의 관계를 학습했다. 이후 초록이 주어지면 자동으로 저자 주제어를 부여할 수 있도록 추천하는 기법을 제안하고 그에 따른 실험을 진행했다. 본 논문에서는 실험을 통하여 기계학습을 이용한 저자 주제어의 추천이 어느 정도의 성능을 보이는지 평가하고 향후 연구의 방향을 제시한다.

  • PDF

E-mail Classification Using Dynamic Category Hierarchy and Automatic Generation of Category Label (분류 주제 자동 생성 및 동적분류체계 방법을 이용한 이메일 분류)

  • Ahn, C.M.;Park, S.;Park, S.H.;Choi, B.K.;Lee, J.H.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.439-441
    • /
    • 2004
  • 이메일 사용이 보편화됨에 따라 점차 수신되는 메일의 량이 증가하고 있다. 이러한 메일 량의 증가는 사용자로 하여금 이메일을 좀더 효율적으로 분류할 수 있는 방법을 필요하게 한다. 그러나 현재의 이메일 분류는 규칙기반, 베이시안, SVM 등을 이용하여 스팸메일을 필터링 하는 이원분류가 주로 연구되고 있다. 이외에도 다원분류에 대한 연구로는 클러스터링을 이용한 방법이 있으나, 이는 단순히 유사도에 의해 메일을 묶는 수준에 그치고 있다. 본 논문에서는 벡터모델의 유사도를 기반으로 한 분류 주제 자동 생성 알고리즘과 동적분류체계 방법을 결합하여 새로운 이메일 자동 다원분류 방법을 제안했다. 본 논문에서 제안한 방법은 이메일을 자동으로 분류하여, 분류된 결과를 색인검색과 디렉토리 검색 방법을 지원하며 대량의 메일도 효율적으로 관리할 수 있다. 또한 메시지를 동적으로 재분류 할 수 있게 함으로써 디렉토리 검색시 재현율을 높였다.

  • PDF

An Analysis of Theory Use in the Library and information Science Research (문헌정보연구의 이론 활용성 분석)

  • 정동열;김성진
    • Journal of the Korean Society for information Management
    • /
    • v.20 no.1
    • /
    • pp.165-198
    • /
    • 2003
  • This study analyzed authors' use of theory in 654 articles that appeared in two core library and information science journals during last three decades. In order to analyze degree of theory use of LIS, such as, publication productivity, growth and distribution of theory in subfields. name and origin of theory, usability of each theory, subfields and journals, and so on, content analysis of LIS theories was performed through conceptual and empirical study. For the purpose of this study, we suggested a couple of new analytical methods, so called, ‘Subfield Classification Scheme’ within LIS, and ‘5 Degrees of Theory Use’ model for the first time.

Issue summarization scheme based on real-time SNS trend analysis (실시간 SNS 트렌드 분석에 기반한 이슈 요약 기법)

  • Kim, Daeyong;Kim, Daehoon;Hwang, Eenjun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1096-1097
    • /
    • 2013
  • 최근 Twitter를 비롯한 소셜 네트워크 서비스의 급속한 확산으로 인해, 많은 수의 SNS 메시지가 실시간으로 생성되고 있다. 이러한 SNS 상의 모든 글을 읽어보는 것은 현실적으로 불가능하며, 여러 포탈 사이트에서 제공되는 실시간 검색어 순위만으로는 상세 내용을 직관적으로 파악하기 어렵다. 따라서, 이러한 SNS상의 글을 실시간으로 분석하여 최신의 트렌드를 찾고 이와 연관된 내용을 분류 및 요약할 수 있다면, 사용자에게 유용한 최신 정보를 생성하여 제공할 수 있다. 본 논문에서는 Tweet 들을 분석하여 얻은 트렌드 키워드를 기반으로 관련된 Tweet 들을 주제 별로 분류한 후, 각 주제 별로 세부 내용을 요약해서 제공하는 기법을 제안한다. 제안하는 기법은 실시간으로 생성되는 Tweet 내에서 최근 화제가 된 트렌드 및 연관 키워드를 추출해낸다. 그 후, 해당 키워드가 출현한 Tweet 내에서 핵심 키워드를 찾고, 이를 기반으로 Tweet 들을 각각의 주제별로 분류하고 각 주제를 '이슈'로 정의한다. 마지막으로, 특정한 이슈에 해당되는 Tweet들을 분석하여 각 이슈 별로 키워드 리스트 및 단문 형식으로 요약된 줄거리를 생성한다. 제안된 기법을 바탕으로 프로토타입 시스템을 구현하고, 다양한 실험을 통하여 이슈 검출 기법의 유용성 면에서 성능을 평가한다.

A Study on Improving the Performance of Document Classification Using the Context of Terms (용어의 문맥활용을 통한 문헌 자동 분류의 성능 향상에 관한 연구)

  • Song, Sung-Jeon;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.29 no.2
    • /
    • pp.205-224
    • /
    • 2012
  • One of the limitations of BOW method is that each term is recognized only by its form, failing to represent the term's meaning or thematic background. To overcome the limitation, different profiles for each term were defined by thematic categories depending on contextual characteristics. In this study, a specific term was used as a classification feature based on its meaning or thematic background through the process of comparing the context in those profiles with the occurrences in an actual document. The experiment was conducted in three phases; term weighting, ensemble classifier implementation, and feature selection. The classification performance was enhanced in all the phases with the ensemble classifier showing the highest performance score. Also, the outcome showed that the proposed method was effective in reducing the performance bias caused by the total number of learning documents.

Semantic Topic Selection Method of Document for Classification (문서분류를 위한 의미적 주제선정방법)

  • Ko, kwang-Sup;Kim, Pan-Koo;Lee, Chang-Hoon;Hwang, Myung-Gwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.163-172
    • /
    • 2007
  • The web as global network includes text document, video, sound, etc and connects each distributed information using link Through development of web, it accumulates abundant information and the main is text based documents. Most of user use the web to retrieve information what they want. So, numerous researches have progressed to retrieve the text documents using the many methods, such as probability, statistics, vector similarity, Bayesian, and so on. These researches however, could not consider both the subject and the semantics of documents. As a result user have to find by their hand again. Especially, it is more hard to find the korean document because the researches of korean document classification is insufficient. So, to overcome the previous problems, we propose the korean document classification method for semantic retrieval. This method firstly, extracts TF value and RV value of concepts that is included in document, and maps into U-WIN that is korean vocabulary dictionary to select the topic of document. This method is possible to classify the document semantically and showed the efficiency through experiment.