• Title/Summary/Keyword: 주면마찰력

Search Result 147, Processing Time 0.021 seconds

Evaluation of Skin Friction on Large Drilled Shaft (대구경 현장타설말뚝의 주면 마찰력 평가)

  • Hong Won-Pyo;Yea Geu-Guwen;Lee Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2005
  • Both static pile load test with load transfer measuring system and the pile dynamic load test are performed to estimate the skin friction and behavior characteristics of a large drilled shaft. And the numerical modeling of large drilled shaft is performed by applying the FDM program. Since the magnitude of friction resistance depends on the relative displacement between soil and shaft, load and displacement at the arbitrary depth along the large drilled shaft are estimated to analyze the correlation. According to the measuring results of load transfer, unit skin friction along the large drilled shaft was fully mobilized at gravel layer in the middle of shaft and the frictional resistance transmitted to bedrock was relatively small. Also, even for the same drilled shaft, the results of PDA and static load test are different with each other and the difference is discussed.

A Study on the Distribution of Residual Stress for Drilled Shaft (현장타설말뚝의 잔류응력 분포에 관한 연구)

  • Kim, Won-Cheul;Hwang, Young-Cheol;Ahn, Chang-Yoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • The distribution of shaft resistance is measured by the static load test with the strain gauge or stress gauge, so that the long-term load distribution must be considered for the pile design. However, the measurement by strain gauge generally assumes the 'zero reading', which is the reading taken at 'zero time' with 'zero' load and the residual stress, which is the negative skin friction(or the negative shaft resistance) caused by the pile construction, is neglected. Therefore, the measured value by strain gauge is different from the true load-distribution because residual stresses were neglected. In this study, the three drilled shafts were constructed, and the strain measurements were carried out just after shaft construction. As a result of this study, it is shown that the true load-distribution of drilled shaft is quite different with known load distribution and the true load-distribution of drilled shaft changed from the negative skin friction to the positive skin according to the load increment.

  • PDF

Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force (인발력을 받는 팩마이크로파일의 주면마찰력)

  • Hong, Won-Pyo;Cho, Sam-Deok;Choi, Chang-Ho;Lee, Choong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.6
    • /
    • pp.19-29
    • /
    • 2012
  • Pack micropiles were recently developed to improve pile capacity of general micropiles. Pack micropiles were made by warping thread bar or steel pipe of general micropile by geotexlile pack and grouting inside the pack with pressure. According to the pressure, the boring hole could be enlarged. A series of pile uplift tests were performed on three micropiles. Two out of the three piles were the pack micropiles and the other was the general micropile, in which a thread bar was used in the boring hole. According to the pressure applied to the pack micropiles, the diameter of boring hole was enlarged from 152 mm to 220 mm. Unit skin friction mobilized on side surfaces of micropiles increased with displacement of pile head and reached on a constant value, which represents that the relative displacement between piles (or thread bar) and soils was reached on critical state. And the uplift resistance of pack micropile was higher than that of general micropile. Two reasons can be considered: One is that the frictional surface increases due to enlarging diameter of boring holes and the other is that the unit skin friction could increase due to compressing effect of surrounding soils by soil displacement as much as the enlarging volume of boring hole. The compression effect appeared at deeper layer rather than surface layer. The unit skin friction mobilized on micropiles with small diameter was higher than the ones on large bored piles.

Vertical Load Transfer Mechanism of Bucket Foundation in Sand (사질토 지반에 설치된 버킷기초의 수직 하중전이 특성)

  • Park, Jeong-Seon;Park, Duhee;Yoon, Se-Woong;Jang, Hwa-Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.7
    • /
    • pp.29-39
    • /
    • 2015
  • The vertical load imposed on the bucket foundation is transferred from the soil inside the bucket to the bottom of the foundation, and also to the outer surface of the skirt. For the design of a bucket foundation installed in sand, the vertical load transfer characteristics have to be clearly identified. However, the response of bucket foundations in sand subjected to a vertical load has not been investigated. In this study, we performed two-dimensional axisymmetric finite element analyses and investigated the vertical load transfer mechanism of bucket foundation installed in sand. The end bearing capacity of bucket foundation is shown to be larger than that of the shallow foundation, whereas the frictional resistance is smaller than that for a pile. The end bearing capacity of the bucket foundation is larger than the shallow foundation because the shear stress acting on the skirt pushes down and enlarges the failure surface. The skin friction is smaller than the pile because the settlement induces horizontal movement of the soil below the tip of the foundation and reduces the normal stress acting at the bottom part of the skirt. The calculated bearing capacity of the bucket foundation is larger than the sum of end bearing capacity of shallow foundation and skin friction of pile. This is because the increment of the end bearing capacity is larger than the reduction in the skin friction.

A Study of Point Selection for Loading Cells in Bi-directional Pile Load Test (양방향재하시험에서 재하장치 위치 선정에 관한 연구)

  • Yoon, Minseung;Kim, Junwoo;Kim, Myunghak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.11-16
    • /
    • 2013
  • Success or failure of the bi-directional pile load test for drilled shaft depends on point selection for loading cells, that is balanced location both uplift force and downward force. Methods to evaluate the ultimate unit side resistance in rockmass layer in both domestic and foreign are based on the uniaxial compression strength of rock core, which can hardly be obtained in domestic rockmass layers which are weathered rockmass layer and soft rockmass layer with very low RQD. Therefore, this study suggested the relation charts between the revised SPT N values and developed unit side resistance of each different layers, which were obtained from bi-directional pile load tests in various domestic sites. To evaluate the appropriateness of the relation charts, the developed unit side resistances from the relation charts were used to select the loading cell position and compared with the measured unit side resistances from field pile load test. Results showed that the developed side resistance from relation charts and the measured side resistance of weathered soil layer and weathered rock layer were very close. Average developed side resistance($1,325kN/m^2$), which are average of upper soft rock layer of loading device($1,151kN/m^2$) and lower($1,500kN/m^2$), was similar with the estimated value ($1,250kN/m^2$).

Side Friction of Deep Foundation for Transmission Tower in Rock (암반에 설치된 송전철탑 심형기초의 주면마찰력 평가)

  • Kim, Dae-Hong;Lee, Dae-Soo;Chun, Byung-Sik;Kim, Byung-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.149-160
    • /
    • 2007
  • Six prototype field tests (five 1/8 and one 1/2 scale tests) have been conducted in order to determine the uplift resistance of deep foundation for transmission line structures. Test sites, located in the city of Eumseng in Choongbuk province, are classified as gneiss. These test results reveal failures not along the foundation-rock interface but either along the damaged surrounding rock mass caused by excavation or along the pre-existing rock joint. Test results also show the uplift resistance which is 20 $\sim$ 30% higher than the current design strength of side friction. In addition to fold tests, four concrete core samples between the liner plate and the surrounding rock mass have been obtained from the existing transmission foundations to study the effect of the liner plate which is installed prior to placing concrete. The compressive strength of these concrete core samples shows 63 $\sim$ 72% of the strength at the time of foundation construction. Side frictional resistance based on such less compacted concrete reaches satisfying uplift design strength.

Skin Friction and End Bearing Resistances of Rock-socketed Piles Observed in Bi-directional Pile Load Tests (양방향 재하시험 결과를 이용한 암반소켓 현장타설말뚝의 주면 마찰력과 선단 지지력)

  • Song, Myung-Jun;Park, Yung-Ho;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.7
    • /
    • pp.17-36
    • /
    • 2013
  • In this paper, the empirical relations of skin friction and end bearing resistance with the results of site investigation in soft rock are proposed through the analysis of bi-directional pile load tests of rock socketed drilled shafts performed at large offshore bridge foundations and high-rise building projects (13 test piles in 4 projects). The site investigation and drilling for bi-directional pile load tests were performed at the centers of test piles, and f-w curves for skin friction and q-w curves for end bearing were plotted based on load-transfer measurements. From the above curves, the empirical relations of skin friction and end bearing resistance with the results of site investigation depending on the mobilized displacement are determined by multiple regression analysis and compared with previous studies. Since the f-w and q-w curves of rock-socketed piles in Korea show hardening behavior according to mobilized displacement, the developed empirical relations by the mobilized displacement are more reasonable than those of previous studies which could not consider the mobilized displacement and suggested the ultimate capacity with unconfined compressive strength only. Particularly, the developed equations correlated with unconfined compressive strength show the best correlations among the equations correlated with other parameters.

A Comparison of Roughness Measurement and Load Transfer Test for the Calculation of Unit Skin Friction of Pile Foundation in Soft Rocks (기초 연암부 벽면거칠기 시험과 하중전이 시험 결과의 비교 및 단위주면마찰력의 산정에 대한 연구)

  • Hong, Seok-Woo;Hwang, Geun-Bae
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.21-30
    • /
    • 2023
  • One of the methods for calculating unit skin friction of soft-rock-socket parts for cast-in-place piles involves the roughness measurement of the parts. The measurements are conducted during the excavation stage. A roughness measuring device is installed in the excavation hole and the unit skin friction is calculated from the measured surface roughness of the rock socket. Herein, the results of roughness measurement of rock-socket parts in cast-in-place piles and that of load transfer tests are analyzed and compared. The unit skin friction from the roughness measurements can be converted into unit skin friction corresponding to the displacement of a pile generated in a load transfer test. A reduction factor is given as Rf = -0.14n + 1.48.

Applicability of Bearing Capacity for Single Drilled Shaft Using Empirical equation based on Ground Condition (토질특성에 따른 현장타설말뚝 지지력 산정 경험식의 적용성)

  • Kim, Daehyeon;Jeong, Sangguk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.167-180
    • /
    • 2019
  • Friction piles are being constructed in Southeast Asia (Myanmar, Cambodia, Vietnam, etc.) where the soft ground is deep, and many cases of friction piles are accumulated in terms of experience. In this study, we used the results of four static load test and load transfer test conducted in Myanmar sites to analyze the skin friction of soil layer. In addition, we proposed a relationship chart with skin friction measured in the N-value of Standard Penetration Test (SPT) and the load transfer test result of the single drilled shaft. In the case of Myanmar sites, the range of soil layers was deeper than domestic sites, so the conventional formula of skin friction using the N-value of SPT is different from domestic sites. In sandy layer, fs = 0.096 N in Myanmar sites showed a similar result of the domestic fs = 0.106 N. In clayey layer, fs = 0.315 N, in Myanmar sites showed about 5.0 times higher than the domestic fs = 0.062 N. The results of this study are based on limited data. Therefore, if we analyze the results of more load transfer tests, we can suggest a conventional formula for skin friction according to the N-value. It is expected to be used as important basic data in the future.

A Study on Characteristics of the Unit Skin Friction Using the Wall Roughness in the Soft Rock (연암부 벽면거칠기를 이용한 단위주면마찰력 특성에 관한 연구)

  • Hong, Seok-Woo;Hwang, Geun-Bae
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.7-13
    • /
    • 2019
  • In the case of the drilled shaft, one of the methods for calculating unit skin friction stress of rock socket parts is to measure the roughness of the excavated face. This method is to estimate the unit skin frictional resistance using a device which measures the roughness shape of the excavated face in the excavation step. In this study, the roughness shapes of the face of the rock socket part in the drilled shaft were measured directly in the perforated hole and the results are used to identify the characteristics of the unit skin friction of the bedrock. In addition, the static load test and the load transfer test were performed on the same pile to verify the result of the roughness test.