DOI QR코드

DOI QR Code

Skin Friction Mobilized on Pack Micropiles Subjected to Uplift Force

인발력을 받는 팩마이크로파일의 주면마찰력

  • Hong, Won-Pyo (School of Civil & Environmental Engineering, Urban Design & Study Chung-Ang Univ.) ;
  • Cho, Sam-Deok (Korea Institute of Construction Technology) ;
  • Choi, Chang-Ho (Korea Institute of Construction Technology) ;
  • Lee, Choong-Min (Dept. of Civil Engineering, Chung-Ang Univ.)
  • 홍원표 (중앙대학교 사회기반시스템공학부) ;
  • 조삼덕 (한국건설기술연구원) ;
  • 최창호 (한국건설기술연구원) ;
  • 이충민 (중앙대학교 대학원 토목공학과)
  • Received : 2011.09.09
  • Accepted : 2012.05.04
  • Published : 2012.06.29

Abstract

Pack micropiles were recently developed to improve pile capacity of general micropiles. Pack micropiles were made by warping thread bar or steel pipe of general micropile by geotexlile pack and grouting inside the pack with pressure. According to the pressure, the boring hole could be enlarged. A series of pile uplift tests were performed on three micropiles. Two out of the three piles were the pack micropiles and the other was the general micropile, in which a thread bar was used in the boring hole. According to the pressure applied to the pack micropiles, the diameter of boring hole was enlarged from 152 mm to 220 mm. Unit skin friction mobilized on side surfaces of micropiles increased with displacement of pile head and reached on a constant value, which represents that the relative displacement between piles (or thread bar) and soils was reached on critical state. And the uplift resistance of pack micropile was higher than that of general micropile. Two reasons can be considered: One is that the frictional surface increases due to enlarging diameter of boring holes and the other is that the unit skin friction could increase due to compressing effect of surrounding soils by soil displacement as much as the enlarging volume of boring hole. The compression effect appeared at deeper layer rather than surface layer. The unit skin friction mobilized on micropiles with small diameter was higher than the ones on large bored piles.

일반마이크로파일의 저항성능을 개선시키기 위해 최근에 토목섬유을 활용한 팩마이크로파일이 개발되었다. 팩마이크로파일은 일반마이크로파일의 강봉이나 강관을 토목섬유팩으로 감싸고 주입재와 주입압을 토목섬유팩 내부에 가하여 제작한다. 이 주입압에 의하여 천공 직경이 크게 확대된다. 동일한 한 지반 속에 설치된 세 개의 마이크로파일을 대상으로 일련의 말뚝인발시험을 실시하였다. 세 말뚝 중 두 개는 팩마이크로파일였고 나머지 하나는 강봉을 사용한 일반마이크로파일이였다. 토목섬유팩에 적용된 주입압에 의하여 팩마이크로파일의 경우 천공직경이 152mm에서 220mm으로 확대되었다. 마이크로파일의 주면에서 발달하는 단위주면마찰력은 말뚝두부의 인발변위량의 증가와 함께 서서히 증가하여 한계상태에 도달한 한계변위량에서 수렴치에 도달한다. 팩마이크로파일의 인발저항력은 일반마이크로파일의 인발저항력보다 크게 나타난다. 이와 같은 팩마이크로파일의 인발저항력을 증대시킬 수 있는 원인으로는 크게 두 가지를 생각할 수 있다; 첫째는 마이크로파일에 설치한 토목섬유팩내 주입압으로 마이크로파일의 단면적을 증대시키므로 말뚝주면의 마찰저항면적을 증대시킬 수 있기 때문이고, 둘째는 마이크로파일의 단면이 확대될 때 확대되는 부분의 체적만큼의 토사가 주변지반을 압축시켜 말뚝과 지반 사이의 마찰저항력을 증대시킬 수 있기 때문이다. 이 압축효과는 지표면 부근 보다 깊은 지층에서 크게 나타났다. 말뚝 주면에서 발휘되는 단위주면마찰력은 말뚝의 직경이 작은 경우가 더 크게 발휘된다. 즉 마이크로파일의 주면에서 발달되는 단위주면마찰력은 대구경 현장타설말뚝의 주면에서 발달되는 단위주면마찰력보다 크게 나타난다.

Keywords

References

  1. ASTM (1994), "Standard Test Methods for Deep Foundations Under Static Axial Tensile Load", The Annual Book of ASTM Standards D 3689, CD-Rom, Soil and Rock(1).
  2. Cadden, A., Gomez, J., Bruce, D., and Armour, T. (2004), "Micropiles: recent advances and trends", Deep Foundation, pp.140-165.
  3. Choi, C., Goo, J., Lee, J. H., Cho, S. D., and Jeong, J. H. (2008), "Development of New Micropiling Technique and Field Installation", Korean Geotechnical Society Spring National Conference, March 27, pp.571-578.(in Korean)
  4. Choi, C., Goo, J, Lee, J. H., and Cho, S. D. (2009), "Development of new micropiling method enhancing frictional resistance with geotextile pack", Proc. of 9th International Workshop for Micropiles, London, May 11.
  5. Choi, Y. S (2010), A Study on Pullout Behavior of belled tension piles Embeded in Cohesiveless Soils, Master's thesis, Chung-Ang University, pp.1-14
  6. DIN (1983), Small Diameter Injection Piles(Cast-in-Place Concrete Piles and Composite Pile), DIN-4128, April, pp. 2-7.
  7. FHWA, (2000), Micropile Design and Construction Guidelines, Publicatoin No. FHWA-SA-97-070.
  8. FHWA, (2005), Micropile Design and Construction, NHI-05-039, pp.7-1-7-28.
  9. Han, J, and Ye, S. (2006), "A field study on the behavior of micro-piles in clay under compression or tension", Canadian Geotechnical Journal, Vol. 43, pp19-29. https://doi.org/10.1139/t05-089
  10. Hong, W. P. (1995), "A Study on stabiliizing Methods for Landslide Control by Micropile", A Research Paper, Chung-Ang University.(in Korean)
  11. Hong, W. P., Yea, G. G., and Lee, J. H. (2005), "Evaluation of Skin Friction on Large Drilled Shaft", Journal of Korean Geotechnical Society Vol.21, No.1, pp.93-103.(in Korean)
  12. Hong, W. P., Hong, S., Lee C. M., and Kim, J. H. (2010), "Model tests to evaluate uplift capacity of micropiles in sand", Proceedings of the 9th Japan/Korea Joint Seminar on Geotechnical Engineering, Edited by Ken-chi Tokdia. Kazuhiro Oda, Japan, pp 175-183
  13. Huang, Y., Hajduk E. L., Lipka D. S., and Adams, J. C. (2007), "Micropile load testing and installation monitoring at the cats vehicle maintenance facility", GSP 158 Comtemporary Issues in Deep Foundations, Geo-Denver 2007 : New Peaks in Geotechnics.
  14. Korea Society of Civil Engineering(1988), "Research of Micropile study on Design and Construction Technology", A Research Paper. (in Korean)
  15. Korea Institute of Construction Technology(2009), "Research of Composite Supported Micopile Method", A Research Paper. (in Korean)
  16. Koreck, H. W. (1978), "Small diameter bored injection piles", EMAP CONSTRUCT LIMIT Volume 11 Issue number 4, pp.14-20.
  17. Littlejohn, G. S. (1993), "Soil Anchorages", in Underpinning and Retention, Edited by S. Thorburn and G. S. Litteljohn, Published by Blakie Academic and Professional, pp.84-156.
  18. Mascardi, C. A. (1982). "Design criteria and performance of micro-piles", Symposium on Recent Developments in Ground Improvement Techniques, Bangkok, 29 Nov.-3 Dec.
  19. Ministry of Land, Transport and Maritime Affairs (2008), Retrofit and Rehabilitation of Urban Building Structure R&D, A Research Paper, A01, pp.93-99. (in Korean)
  20. Misra, A., and Chen, C. (2004), "Analytical solution for micropile design under tension and compression", Geotechnical and Geological Engineering, Vol. 22, pp.199-225. https://doi.org/10.1023/B:GEGE.0000018356.85647.79
  21. Misra, A., Roberts, L. A., Oberoi, R., and Chen, C.-H. (2007), "Uncertainty analysis of micropile pullout based upon load test results", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No.8, pp.1017-1025. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:8(1017)

Cited by

  1. Evaluation of Bearing Capacity of Waveform Micropile by Numerical Analyses vol.14, pp.11, 2013, https://doi.org/10.5762/KAIS.2013.14.11.5906
  2. 사질토지반에서 그룹 마이크로파일의 설치조건에 따른 인발거동특성 vol.31, pp.2, 2015, https://doi.org/10.7843/kgs.2015.31.2.27
  3. 원심모형실험을 이용한 파형 마이크로파일 형상에 따른 성능평가 vol.36, pp.6, 2012, https://doi.org/10.12652/ksce.2016.36.6.1049
  4. Reinforcement Effect of Micropile According to the Pile Section Change vol.19, pp.2, 2012, https://doi.org/10.9798/kosham.2019.19.2.185