• 제목/요약/키워드: 주가 예측 모델

검색결과 1,789건 처리시간 0.03초

임계값 설정을 통한 근치적 위절제술 후 합병증 발생 예측 모델의 성능 평가 (Performance of a Model to Predict Complication Occurance after Radical Gastrectomy according to Thresholds)

  • 임수연;최자윤
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.687-689
    • /
    • 2024
  • 위암은 전 세계적인 주요 건강문제이며, 근치적 위절제술은 위암의 표준치료이다. 근치적 위절제술 후 치료목표는 합병증 발생을 낮춰 병전 상태로 빠르게 회복하는 데 있다. 따라서, 근치적 위절제술 후 합병증 발생 여부를 선별하여 예측할 수 있는 성능이 좋은 모델을 개발하는 것은 위암환자의 회복에 매우 중요하다. 랜덤포레스트 모델은 여러 개의 결정트리를 활용한 배깅 방식의 대표적인 알고리즘으로 의료 데이터를 기반으로 한 예측에 있어 뛰어난 성능을 보여 주었다. 그러나 실제 데이터는 불균형이 빈번하게 발생하여 모델의 예측 성능에 영향을 미치므로, 최적의 분류 임계값을 설정하여 다수 클래스에 대한 편향을 줄이는 것이 중요하다. 따라서, 본 연구는 최근 10년 간 일개 대학병원의 전자의무기록 데이터를 활용하여 근치적 위절제술 후 합병증 발생을 예측하는 랜덤포레스트 모델을 개발하고, 임계값 설정을 통해 불균형 데이터에 대한 모델의 성능을 평가하고자 한다.

PCA를 활용한 기업실적 예측변수 생성 (Generating Firm's Performance Indicators by Applying PCA)

  • 이준혁;김갑조;박상성;장동식
    • 한국지능시스템학회논문지
    • /
    • 제25권2호
    • /
    • pp.191-196
    • /
    • 2015
  • 최근 기업의 실적 및 주가를 예측하기 위해 매출액증가율, 부채비율 등의 다양한 예측변수를 활용하여 정량적인 예측방법을 활용하는 연구가 많이 이루어지고 있다. 기업실적 및 주가를 정량적 예측하기 위해 수많은 예측변수들 중에서 모델구축을 위해 중요한 예측변수를 선정하는 것이 중요하다. 대부분의 기존연구들에서는 다양한 알고리즘을 활용하여 예측변수들을 제거하는 방법을 사용하는 경우가 많았다. 이러한 경우 각 예측변수들이 가지는 많은 정보들이 제거되는 문제점이 존재한다. 이러한 문제점을 해결하기 위해 본 연구에서는 예측모델 구축을 위해 예측변수들을 제거하는 대신 각 변수들이 가지고 있는 정보를 병합하여 새로운 변수를 생성하는 대표적인 차원축소 방법인 주성분분석(PCA)을 활용하였다. 본 연구에서는 제안된 예측모델을 미국의 전자, 전기기업의 재무정보를 활용하여 구축하고 예측성능을 실증적으로 분석해 보았다.

BIM 기반의 설계단계 원가예측 시계열모델 -자재가격을 중심으로- (BIM Based Time-series Cost Model for Building Projects: Focusing on Construction Material Prices)

  • 황성주;박문서;이현수;김현수
    • 한국건설관리학회논문집
    • /
    • 제12권2호
    • /
    • pp.111-120
    • /
    • 2011
  • 최근 도심지 고밀화에 따른 공간의 효율적 이용이 요구됨에 따라 대규모의 고층 사무공간이 증가하고 있으며, 이와 함께 주거, 상업, 문화 등 다양한 기능을 밀접하게 연관시킨 고층 복합시설도 점차 늘어가고 있다. 이러한 대형 건설, 프로젝트는 긴 공사기간이 소요되어 공사비 예측이 쉽지 않으며, 막대한 비용이 투입되기 때문에 비용 예측의 중요성이 더욱 증대되고 있다. 이러한 상황에서 최근 극심한 경제변화에 따른 건설자재가격의 변동은 자재비를 포함한 공사비 예측을 어렵게 만드는 주요 원인이다. 따라서 본 연구는 건설자재단가 시계열자료를 활용, 미래의 자재단가 예측을 위한 시계열모델을 구축하고 복잡한 모델 프로세스를 간소화하는 자재별 최적 예측모델 도출시스템을 구축한다. 또한 Building Information Modeling(BIM)의 접근을 통해 자재의 투입시기 및 투입물량을 분석, 시계열모델을 통해 예측한 자재단가 예측 값과 조합함으로써 총 자재비를 포함하는 BIM기반 공사원가 예측 시계열모델을 제시한다. 본 연구는 시계열모델의 하나인 Autoregressive Integrated Moving Average(ARIMA)모델에 대한 예측력 비교를 통해 자재단가 예측을 위한 적합모델을 도출하였다. BIM기반의 원가예측 시계열모델은 자재의 투입시기별 자재단가 변동치를 예측함으로써 급변하는 경제 환경 변화에 대처할 수 있는 도구가 될 것이다.

유비쿼터스 환경에서 자가 치유를 지원하는 하이브리드 예측 모델 (A Hybrid Prediction Model for Self-Healing in Ubiquitous Environment)

  • 유길종;박정민;이은석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.319-322
    • /
    • 2006
  • 오늘날 분산 컴퓨팅 환경에서 운용되는 시스템이 증가됨에 따라 시스템의 관리작업은 고수준의 자동화를 요구하고 있다. 이에 따라 시스템 관리방식은 전통적인 관리자 중심에서 시스템 스스로가 자신의 문제를 인식하고 상황을 분석하여 해결하는 자율 컴퓨팅 방식으로 변화하고 있으며, 현재 이에 대한 연구가 많은 연구기관에서 다양한 방법으로 이루어 지고 있다. 그러나 이러한 대부분의 연구에서 자율 컴퓨팅의 한 요소인 자가 치유는 문제가 발생한 이후의 치유에 주로 초점이 맞추어져 있다. 이러한 문제를 해결하기 위해서는 시스템 스스로가 동작환경을 인식하고 에러의 발생을 예측하기 위한 예측 모델을 필요로 하게 된다. 따라서, 본 논문에서는 자율 컴퓨팅환경에서 자가 치유를 지원하는 4 가지 예측 모델 설계 방법을 제안하며, 본 예측 모델을 ID3 알고리즘, 퍼지추론, 퍼지뉴럴네트워크 그리고 베이지안 네트워크가 각 시스템 상황에 맞추어 적절하게 사용되는 하이브리드 방식이며, 이를 통해 보다 정확하고, 신속한 에러 예측이 가능해진다. 우리는 제안 모델을 평가하기 위해 본 예측 모델을 자가 치유 시스템에 적용하여 기존 연구와 예측 효율을 비교하였으며, 그 결과를 통해 제안 모델의 유효성을 증명하였다.

  • PDF

자가치유 시스템을 위한 하이브리드 예측모델 (Hybrid Prediction Model for Self-Healing System)

  • 유길종;박정민;정철호;이은석
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2006년도 학술대회 1부
    • /
    • pp.381-386
    • /
    • 2006
  • 오늘날 분산 컴퓨팅 환경에서 운용되는 시스템이 증가함에 따라 시스템의 관리작업은 고수준(high-level)의 자동화에 대한 요구가 증가하고 있다. 이에 따라 시스템 관리방식이 전통적인 관리자 중심의 방식에서 시스템 스스로가 자신의 문제를 인식하고 상황을 분석하여 해결하는 자율 컴퓨팅 방식으로 변화하고 있으며, 이에 대한 연구가 많은 연구기관에서 다양한 방법으로 이루어지고 있다. 그러나 이러한 대부분의 기존 연구들은 문제가 발생한 이후의 치유에 주로 초점이 맞추어져 있다. 이러한 문제를 해결하기 위해서는 시스템 스스로가 동작환경을 인식하고 에러의 발생을 예측하기 위한 예측 모델이 필요하다. 따라서 본 논문에서는 자율 컴퓨팅환경에서 자가 치유를 지원하는 4가지의 예측 모델 설계 방법을 제안한다. 본 예측 모델은 ID3 알고리즘, 퍼지 추론, 퍼지 뉴럴 네트워크 그리고 베이지안 네트워크가 각 시스템 상황에 맞춰 적절하게 사용되는 방식이며, 이를 통해 보다 정확한 에러 예측이 가능해진다. 우리는 제안모델의 평가를 위해 본 예측모델을 자가치유 시스템에 적용하여 기존 연구와 예측의 효율을 비교하였으며, 그 결과를 통해 제안 모델의 유효성을 증명하였다.

  • PDF

앙상블 기법을 통한 잉글리시 프리미어리그 경기결과 예측 (Prediction of English Premier League Game Using an Ensemble Technique)

  • 이재현;이수원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권5호
    • /
    • pp.161-168
    • /
    • 2020
  • 스포츠 경기 결과예측은 전반적인 경기의 흐름과 승패에 영향을 미치는 변인들의 분석을 통해 팀의 전략 수립을 가능하게 해준다. 이와 같은 스포츠 경기결과 예측에 대한 연구는 주로 통계학적 기법과 기계학습 기법을 활용하여 진행되어 왔다. 승부예측 모델은 무엇보다 예측 성능이 가장 중요시된다. 그러나 최적의 성능을 보이는 예측 모델은 학습에 사용되는 데이터에 따라 다르게 나타나는 경향을 보였다. 본 논문에서는 이러한 문제를 해결하기 위해 데이터가 달라지더라도 해당 데이터에 대한 예측 시 가장 좋은 성능을 보이는 모델의 선택이 가능한 기존의 축구경기결과 예측에서 좋은 성능을 보여온 통계학적 모델과 기계학습 모델을 결합한 새로운 앙상블 모델을 제안한다. 본 논문에서 제안하는 앙상블 모델은 각 단일모델들의 경기 예측결과와 실제 경기결과를 병합한 데이터로부터 최종예측모델을 학습하여 경기 승부예측을 수행한다. 제안 모델에 대한 실험 결과, 기존 단일모델들에 비해 높은 성능을 보였다.

주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구 (Data Mining Tool for Stock Investors' Decision Support)

  • 김성동
    • 한국콘텐츠학회논문지
    • /
    • 제12권2호
    • /
    • pp.472-482
    • /
    • 2012
  • 주식시장에는 많은 투자자들이 참여하고 있으며 점점 더 많은 사람이 주식투자에 관심을 가지고 있다. 주식시장에서 위험을 회피하고 수익을 얻기 위해서는 다양한 정보를 바탕으로 정확한 의사결정을 해야한다. 즉 수익을 얻을 수 있는 종목 선택, 적절한 매수-매도 가격의 결정, 그리고 적절한 보유기간 등을 결정해야 한다. 본 논문에서는 개인 주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구를 제안한다. 즉, 개인 투자자가 직접 기계학습 방법을 적용하여 주가예측 모델을 생성할 수 있게 하고, 적절한 매수-매도 가격과 보유기간 등을 결정하는 것을 도와주는 도구를 제안한다. 제안하는 도구는 과거 데이터를 이용하여 투자자 자신의 성향에 맞는 투자에서의 의사결정을 할 수 있도록 지원하는 도구로서 주가데이터 관리, 기계학습 적용을 통한 주가예측 모델 생성, 투자 시뮬레이션 등의 기능을 제공한다. 사용자는 스스로 주가에 영향을 미칠 수 있다고 판단하는 기술적 지표를 선정하고 이를 이용하여 주가예측 모델을 만들고 테스트 할 수 있으며, 적절한 예측모델을 적용하여 시뮬레이션을 수행해 봄으로써 실제로 어느 정도 수익을 얻을 수 있는지 평가하고 적절한 매매 정책을 수립할 수 있다. 제안하는 도구를 이용하여 주식 투자자는 기존의 감정적 판단에 의한 투자가 아닌 객관적 데이터에 의해 검증을 거친 주가예측 모델과 매매정책에 따라 주식투자를 할 수 있어 이전 보다 나은 수익을 기대할 수 있다.

K-평균 군집화 데이터 증강을 통한 주가 심층 예측 (Deep Prediction of Stock Prices with K-Means Clustered Data Augmentation)

  • 한경훈;양희규;추현승
    • 인터넷정보학회논문지
    • /
    • 제24권2호
    • /
    • pp.67-74
    • /
    • 2023
  • 금융 분야에서 주가예측연구는 거래 안정성 및 이익 실현 등을 목적으로 한다. 기존의 통계적 예측기법은 무작위로 예측한 결과와 정확도 측면에서 비슷하거나 낮은 예측 신뢰도 때문에 실제 거래 결정에 참고 되기 어렵다. 인공지능 모델은 데이터특성과 변동패턴을 학습해 예측하기 때문에 향상된 정확도를 달성한다. 그러나 장기간의 시계열 데이터를 사용해 주가를 예측하는 것은 여전히 어려운 문제이다. 본 논문에서는 K-means 클러스터링 기반의 데이터 증강 및 입력 시퀀스의 Window-size 별 정규화 기법과 시계열 학습에 특화된 LSTM 모델을 활용하여 안정적이고 신뢰성 있는 주가예측 방법을 제안한다. 이를 통해 더욱 정확하고 신뢰성 있는 예측 결과를 얻고, 나아가 시장 안정성에 기여할 뿐 아니라 높은 수익도 추구할 수 있다.

서술어 중심 감성 사전을 통한 주가 등락 예측 (Stock Market Prediction using Sentiment Dictionary based on Predicates)

  • 엄장윤;이수원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.857-860
    • /
    • 2014
  • 본 연구에서는 경제 뉴스로부터 서술어 중심의 감성 사전을 구축하고, 하루 동안에 배포된 뉴스를 이용해 전일 종가 대비 당일 종가의 등락을 예측하는 모델을 제안한다. 기존의 주식 도메인 관련 감성 사전을 구축하는 방식은 주가 등락에 관련된 명사를 중심으로 사전을 구축하는 방식이나 대부분의 명사는 극성 값이 중립인 경우가 많아 극성 값을 추정하기 힘들다는 문제점이 있다. 본 연구에서는 극성 값이 잘 표현되는 서술어 중심의 감성사전을 구축하고 극성 값을 자동 추출하여 주가의 등락을 예측한다. 실험 결과 기존 감성 사전을 통한 주가 예측 방법에 비하여 본 연구에서 제안하는 서술어 중심의 감성 사전을 통한 주가 예측 정확도가 높게 나타났다.

T형 3레벨 인버터 중성점 전압의 모델예측제어 (Model predictive control for T-type 3-level inverter neutral point)

  • 김태훈;이우철
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 추계학술대회 논문집
    • /
    • pp.145-146
    • /
    • 2015
  • 본 논문은 3상 T-type 3-레벨 인버터의 중성점 전압 제어를 위한 예측제어에 관한 연구이다. 최근 인버터의 효율 향상 등의 장점으로 멀티레벨 인버터가 주목받고 있다. 모델예측제어 방식은 물리적 입력 상태를 반영하여 최적의 성능을 제공할 수 있는 제어기법이다. 3-레벨 인버터에서는 전압벡터의 개수가 많아 예측제어기법을 적용하기에는 계산시간이 오래걸리는 단점이 있다. 본 논문에서는 SPWM 방식에 예측저어를 통해 offset 을 주는 방식으로 DC-link단 중성점 전압제어를 하였다.

  • PDF