증권의 가격형성에 유리한 뉴스와 불리한 뉴스가 도착할 때 이 뉴스가 주가의 변동성에 미치는 영향의 정도는 차이가 있다. 불리한 뉴스가 변동성에 미치는 영향도가 유리한 뉴스가 변동성에 미치는 영향도보다 크다. 따라서 불리한 뉴스가 발생할 때 형성되는 변동성의 양이 유리한 뉴스의 도착시보다 크다. 그리고 충격의 크기에 따라 이 충격이 야기하는 변동성의 양의 크기에도 차이가 존재한다. 일반 자기회귀 조건부 이분산 과정은 유리한 뉴스와 불리한 뉴스를 대칭적으로 반영하고 있다. 이 뉴스들을 비대칭적으로 포착하는 자기회귀 조건부 이분산 과정의 모형들을 실증적으로 분석하였다. 뉴스의 비대칭성과 규모를 적절히 포착하고 있는 모형들이 비선형 일반 자기회귀 조건부 이분산 과정, 지수 일반 자기회귀 조건부 이분산 과정과 정보 포착 자기회귀 조건부 이분간 과정임이 발견되었다. 이 중 비선형 일반 자기회귀 조건부 이분산 과정이 가장 좋은 모형으로 보인다. 비선형 일반 자기회귀 조건부 이분산 과정의 경우 예측오차의 승멱(power)이 약 1.5이다. 따라서 일반 자기회귀 조건부 이분산 과정의 예측오차의 승멱인 2에 비하여 작다. 이 사실은 일반 자기회귀 조건부 이분산의 예측오차의 승멱이 과도하게 측정되고 없음을 알 수 있다. 뉴스의 비대칭성과 규모를 반영하고 있는 모형들은 한결같이 예측오차의 크기에 적절한 가중치를 부여하여 예측오차의 크기를 조정하고 있다. 이 모형의 성질과 실증분석의 결과에 의하여 예측오차의 승멱은 2 이하로 수정하여 사용해야 한다는 점이 시사되고 있다. 음의 충격이 양의 충격보다 주가의 변동성을 크게 하고 없음이 발견되었다. 주가형성에 유리한 뉴스와 불리한 뉴스가 주가의 변동성에 미치는 영향의 차이와 충격의 중대성을 양으로 표시하는 규모의 차이를 반영해주는 변수들의 추정된 계수가 미국과 일본보다 절대값에 있어서 상당히 작다. 이 현상은 뉴스의 비대칭성과 규모보다는 발생하는 충격, 즉 뉴스 자체에 보다 민감하게 반응하고 있음을 보여주고 있다. 물론 투자자들이 뉴스의 비대칭성과 규모를 완전히 무시하고 투자활동을 전개하고 있다는 것을 의미하는 것은 아니다.
본 연구에서는 한국주식시장의 대표적 주가지수인 KOSPI 200 진입기업과 제외기업의 주가 행태에 어떤 변화가 있는지를 분석하였다. 1994년 6월 이후부터 1999년 정기변경때까지의 기간에 KOSPI 200에 새로 진입한 종목과 제외된 종목을 검증표본으로 하고 이와 유사한 특성을 가지는 기업들을 대응표본으로 삼아 두 집단간에 나타나는 비정상수익률 및 누적비정상수익률의 특성과 비정상수익률과 비정상거래량간의 관계를 비교 분석하였다. 사건일의 비정상수익률과 사건기간동안의 누적비정상수익룰에 대한 분석결과는 KOSPI 200에 새로 포함되거나 제외되는 종목의 주가행태에 뚜렷한 변화가 있다는 결과를 보여주지는 못하고 있다. 그러나 일부 표본의 분석결과는 KOSPI 200에 새로 진입하거나 제외되는 정보가 공시일 이전에 시장에 반영되는 모습을 보여주며, 외환위기 이후기간에 발생한 정기변경진입종목에 나타난 주가행태 변화와 주가변동과 거래량 변동간의 관계는 일부 가격압박가설로 설명될 수 있음을 보여준다. 그러나 본 연구의 분석결과는 지수 신규편입 종목들이 펀드에 신규로 편입되는 과정에서 거래량이 증가해 초과수익이 발생한다는 기존의 가격압박가설의 내용을 충분히 지지하지는 못하고 있다.
최근 금리 인하로 주식을 비롯한 다양한 금융상품에 대한 투자가 급증하고 있다. 주식 시장에서 가격은 시장의 모든 정보들이 반영된 결과로서 주식의 가격 변동을 이용하여 가격 패턴을 찾아낸 후 다양한 분석기법으로 주가 지수를 예측하는 연구들이 진행되어 왔다. 그러나 주식 시장은 기업의 내·외부 요인들의 상호관계가 주가 형성에 많은 영향을 주는 가격 결정 메카니즘으로 인해 주가의 변동을 설명할 수 없는 경우가 자주 발생하고 있다. 따라서 주식 시장 예측을 위해서는 시장 내부의 변화와 외부 사건들을 함께 반영할 수 있는 방법이 필요하다. 본 논문에서는 뉴스 기사들에 대한 감성 분석과 주가지수의 시계열 데이터를 딥러닝 예측 모델을 통해 주식 시장의 추세를 예측할 수 있는 주가지수 예측 프로그램을 제안한다.
고빈도 자료를 이용하여 한국과 중국에서 주가지수선물시장이 개설된 이후 현물 시장과의 동적관련성에 어떠한 특징적 차이점이 있는지에 대해 분석하였다. KOSPI 200의 경우 시차변수를 이용한 다중회귀분석에서 주가지수선물가격이 현물가격을 약 15분 정도 선행하는 것으로 나타나 주가지수선물시장이 현물시장에 대해 가격발견기능을 수행하는 것으로 나타났다. EGARCH 모형을 이용한 수익률 변동성의 선-후행관계 분석의 경우 강하지는 않지만 주가지수선물가격의 변동성이 현물가격의 변동성에 선행하는 것으로 나타났다. 한국의 경우 주가지수선물시장이 개설된 초기단계에서부터 다른 선진국의 경우와 비슷하게 선물시장과 현물시장 간에는 가격 및 가격변동성의 동적관련성이 존재하는 것으로 나타났다. CSI 300의 경우 한국과는 다른 특징적 차이를 보여주고 있다. 우선 현물시장의 가격이 주가지수선물시장의 가격에 선행하는 것으로 나타났다. 그 이유는 국내의 개인투자자와 외국인 투자자들이 주가지수선물거래에 참여하는 것이 엄격히 제한됨으로써 선물시장으로 유입되는 정보가 상대적으로 늦게 가격에 반영되어 선물시장의 가격발견기능을 약화시킨 결과로 판단된다. 변동성의 경우 현물시장과 주가지수선물시장 간에는 양방향의 상호의존성이 나타나고 있어 어느 한 시장의 일방적인 선행효과는 발생하지 않는 것으로 나타났다. 정리하면, 중국의 주가지수선물시장은 투자자들의 시장참여에 대한 여러 가지 제약으로 인해 충분한 정보전달 기능을 수행하지 못하는 것으로 나타났다.
본 연구는 우리나라를 비롯한 미국, 영국, 독일, 일본시장을 대상으로 환율과 주가의 선후행 결합관계를 검정해 보고 선행변수가 원인변수가 될 수 있는가에 대한 인과관계를 검정해 보고자 시도되었다. 이를 위해서 1980년부터 1997년까지를 분석기간으로 교차상관관계검정과 인과 관계검정을 시도해 보았다. 우선 AIC에 따른 최적시차를 대상으로 교차상관관계에 대한 Ljung-Box Q 통계량 검정을 실시한 결과 한국, 영국, 독일의 경우에는 환율이 주가에 선행결합하는 것으로 나타났으나 미국, 일본은 유의적인 관계가 도출되지 않았다. 또한 안정적 시계열자료를 대상으로 Granger, Sims, Geweke-Meese-Dent 모형에 따라 인과관계를 검정해 본 결과에서는 한국, 영국, 독일의 경우에는 환율변동률이 주식수익률에 대한 일방적 원인변수로 나타났다. 이를 환율변동의 크기에 따라 루브르 협정 이전과 이후로 구분해서 검정해 본 결과 환율변동이 매우 심했던 협정 이전 기간에는 한국과 영국의 일부 모형에서만 환율변수가 유의적인 원인변수로 작용하였지만 환율변동이 작았던 협정 이후 기간에는 한국, 영국, 독일을 대상으로 모든 검정모형에서 유의적인 인과관계가 나타났다. 반면에 미국, 일본의 경우에는 분석기간 전체뿐만 아니라 루브르 협정 이전과 이후를 구분하더라도 유의적인 인과관계가 나타나지 않았다. 이는 미국, 일본의 대외무역의존도가 20%대 수준에 머물고 있어서 상대적으로 40%대 이상의 대외무역의존도를 기록하고 있는 한국, 영국, 독일과는 다른 결과가 도출된 것이라고 볼 수 있다. 따라서 대외무역의존도가 높은 한국, 영국, 독일에서는 환율이 주가에 비해 선행하여 변동한다고 볼 수 있다.
'90년대 주식시장의 특징 가운데 하나는 주가차별화 현상이고, 국내경기에서 나타난 특징 가운데 하나는 경기의 양극화(兩極化) 현상과 산업별 차별화(差別化) 현상이다. 실물부문에서의 산업간 차별화 현상은 실물경기에 바탕을 두고 있는 주식시장에 많은 영향을 미칠 수 있는데 본고에서는 산업간 차별화현상이 주식시장의 업종별 차별화에 어느 정도 영향을 미치고 있는가를 분석하였다. 본 연구결과 경기의 대용변수인 '산업생산지수 변동률'이 주가지수 차별화에 별다른 영향을 주지 못하는 것으로 나타나 최근 주식시장과 경기와의 괴리감을 설명해 주고 있다. 반면, 나무제조업 및 종이제조업은 주당순이익(EPS)의 차이로 인하여 주가지수가 타산업의 주가지수와 차이를 보이고 있다. 이는 우리 주식시장에서 주당순이익(株當純利益)(EPS)의 변동이 업종별 주가차별화의 요인으로 작용한다고 볼 수 있다.
시간의 흐름에 걸친 주가시계열의 행동양식에 대한 연구에서는 선형성, 비선형성, 장기기억, 항상성분 등에 대한 명확한 결론을 내리고 있지 못한 실정이다. 주가 시계열과정을 설명하고 예측하기 위한 여러 모형들에 대한 실증연구에는 설명력과 예측력을 완벽하게 갖추고 있지 못하고 있다는 증거들이 제시되고 있다. 계절적 변동을 주가시계열에 적용하지 않는 관계로 이와 같은 결과가 발생할 가능성이 존재한다. 분기별 종합주가지수의 수익률에 계절적 단위근이 존재하고 있음이 실증분석을 통하여 밝혀졌다. 이 시계열에서는 계절적 단위근을 제거하기 위하여서는 제4계 시차 작용소가 적절한 필터임이 인정되었다. 월별 종합주가지수의 수익률에서도 계절적 단위근이 존재하고 있다. 따라서 제12계 시차 작용소를 사용하여 계절적 단위근을 제거하여야 할 것이다. 분기별 수익률에는 제4차 시차 작용소를, 월별수익률에서는 제12차 시차 작용소를 필터로 사용하여 이 시계열들을 차분화하고 이 차분화를 통하여 계절적 단위근을 제거한 후에 이 시계열들의 시계열적 성질과 특성을 탐구해야 할 것이다. 이 과정을 통할 때 시계열 과정에 대한 계량경제학적 모형에 대한 정확한 추론이 가능하게 된다.
본 연구의 목적은 거시경제변수의 수익률 및 변동성이 호텔 레저 주가지수 수익률 및 변동성에 대해 정보이전효과가 존재하는 지에 대해 알아보는 것이다. 실증분석을 위해 2000년 1월 4일부터 2015년 12월 31일까지 자료가 사용되었다. 연구의 주요 결과는 다음과 같다. 첫째, 시간가변 AR(1)-GARCH(1,1) 모형을 이용하여 분석한 결과, 거시경제변수으로부터 호텔 레저 주가지수로 수익률 및 변동성의 이전효과는 통계적으로 존재하지 않는 것으로 나타났다. 둘째, 환율(KOSPI)과 호텔 레저 주가지수의 수익률 간에는 음(양)의 관계를 가지는 것으로 나타났다. 마지막으로 원유(금리)와 호텔 레저 주가지수의 변동성 간에는 양(음)의 관계를 가지는 것으로 관측되었다.
주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.
본 연구에서는 French, Schwert, & Stambaugh와 Schwert의 연구에 사용된 방법을 이용하여 한국 증권시장에서 주식수익률의 변동성의 특징을 분석하였다. 본 연구에 사용된 모형은 주식시장의 변동성의 시계열 특성에 대한 보다 조직적 분석을 제공한다. 간단히 말하면, 이 모형들은 일별 수익률로부터 자기회귀 및 계절적 영향을 제거함으로써 예기치 못한 수익률을 추정할 수 있게 한다. 그리고 나서 자기회귀 및 계절적 모형에 예기치 못한 수익률의 절대값을 이용하여 주가변동성을 예측하였다. 분석결과 첫째, 총체적 주식수익률의 움직임에 대한 지속성은 미약하고, 자기회귀모형에 비정상성이 있을 수 있음을 알 수 있었다. 또한, 일별 주가변동성의 움직임이 주식수익률의 움직임보다 훨씬 예측가능하다는 것을 발견하였다. 둘째, 변동성의 증가가 미래 기대수익률을 증가시킨다는 증거는 미약하고, 변동성이 시차 주식수익률과 관계가 있다는 사실을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.