• Title/Summary/Keyword: 조류 바이오매스

Search Result 57, Processing Time 0.023 seconds

Bioethanol Production from Seaweed Undaria pinnatifida Using Various Yeasts by Separate Hydrolysis and Fermentation (SHF) (갈조류 미역(Undaria pinnatifida)의 분리당화발효와 다양한 효모를 이용한 바이오에탄올의 생산)

  • Nguyen, Trung Hau;Ra, Chae Hun;Park, Mi-Ra;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.529-534
    • /
    • 2016
  • Bioethanol was produced using the separate hydrolysis and fermentation (SHF) method with macroalgal polysaccharides from the seaweed, Undaria pinnatifida as biomass. This study focused on the pretreatment, enzymatic saccharification, and fermentation of yeasts in co-culture. Ethanol fermentation with 14.5% (w/v) seaweed hydrolysate was performed using the yeasts, Saccharomyces cerevisiae KCTC 1126 alone, Pichia angophorae KCTC 17574 alone, and their co-cultures with the yeasts either adapted to mannitol or not. Among the combinations, the co-culture of non-adapted S. cerevisiae and P. angophorae adapted to mannitol showed high bioethanol production of 12.2 g/l and an ethanol yield ($Y_{EtOH}$) of 0.41. Co-culture in the SSF process was employed in this study, to increase the ethanol yields of 35.2% and reduction of 33.3% in fermentation time. These results provide suitable information on ethanol fermentation with marine seaweeds for bioenergy production.

Simultaneous Effect of Salinity and Temperature on the Neutral Lipid and Starch Accumulation by Oceanic Microalgae Nannochloropsis granulata and Chlorella vulgaris (염분과 온도의 동시 영향에 따른 해양 미세조류 Nannochloropsis granulata와 Chlorella vulgaris의 중성지질 및 녹말 축적에 관한 연구)

  • Ko, Kyungjun;Lee, Chi-Heon;Moon, Hye-Na;Lee, Yeon-Ji;Yang, Jinju;Cho, Kichul;Kim, Daekyung;Yeo, In-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.236-245
    • /
    • 2016
  • Because microalgae represent high growth rate than terrestrial plants, and it can accumulate significant lipid and carbohydrate content, and other bioactive compounds such as carotenoid and polyphenol in their body, it has been considered as one of the promising resources in bio-energy, and other industries. Although many studies has been performed about the microalgae-derived biochemical accumulation under various abiotic conditions such as different temperatures, salinities and light intensities, the studies about simultaneous effect of those parameters has rarely been performed. Therefore, this study focused on evaluation of simultaneous effect of different salinity (10, 30, 50 psu) and temperatures (20, 25, $30^{\circ}C$) on the changes of biomass, lipid, starch and photosynthetic pigment accumulation. As results, the highest growth rate was achieved at $30^{\circ}C$ and 30 psu in the both algal cultures, and the photosynthetic pigment, chlorophyll a and total carotenoid content, were increased in a temperature-dependent manner. The accumulation of lipid and starch contents exhibited different aspects under different combinations of temperature and salinity. From the results, it is suggested that the changes of microalgal lipid and starch accumulation under different salinities may be affected by the different temperatures.

Biochemical Composition of a Korean Domestic Microalga Chlorella vulgaris KNUA027 (한국 토착 미세조류 클로렐라 불가리스 KNUA027 균주의 생화학적 조성)

  • Hong, Ji Won;Kim, Oh Hong;Jo, Seung-Woo;Kim, Hyeon;Jeong, Mi Rang;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.400-407
    • /
    • 2016
  • A unicellular green alga, Chlorella vulgaris KNUA027, was isolated from the roots of Panax ginseng seedlings and its biotechnological potential was investigated. The results of GC/MS analysis showed that C. vulgaris KNUA027 was rich in nutritionally important polyunsaturated fatty acids (PUFAs) such as alpha-linolenic acid (C18:3 ω3, 45.8%, 50.8 mg/g) and hexadecatrienoic acid (C16:3 ω3, 11.8%, 13.1 mg/g). Therefore, this Korean indigenous microalga may have potential as a source of omega-3 PUFAs. It was also found that the saturated palmitic acid (C16:0, 37.1%, 41.2 mg/g), which is suitable for biodiesel production, was one of the major fatty acids produced by strain KNUA027. The proximate analysis showed that the volatile matter content was 88.5%, and the ultimate analysis indicated that the higher heating value was 19.8 MJ/kg. Therefore, the results from this research with C. vulgaris KNUA027 may provide the basis for the production of microalgae-based biofuels and biomass feedstock.

Characteristics of Acid-hydrolysis and Ethanol Fermentation of Laminaria japonica (다시마의 산 가수분해와 에탄올 발효 특성)

  • Na, Choon-Ki;Song, Myoung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In order to study the utilization of brown seaweed Laminaria japonica as an alternative renewable feedstock for bioethanol production, the properties of acid hydrolysis and ethanol fermentation were investigated. The acid hydrolysis enhanced the final yield of fermentable sugars, which led great increase of ethanol productivity. The maximum yield of reducing sugars reached 135 mg/g-dry Laminaria japonica after 1.0N sulfuric acid-hydrolysis at $130^{\circ}C$ for 6 h. The Saccharomyces cerevisiae (ATCC 24858) could ferment $C_6$-sugars like glucose, galactose and mannose into ethanol, but not $C_5$-sugars like arabinose and xylose. Optimal fermentation time varied with sugars; 48 h for glucose, 72 h for galactose, and 96 h for mannose. Nevertheless, the ethanol yield from the hydrolysate reached 242 mg/g-dry Laminaria japonica after fermentation by the S. cerevisiae at $35^{\circ}C$ for 96 h, which corresponds to approximately 4 times more than the theoretical yield from total reducing sugars in the hydrolysates. It indicates that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. The ethanol concentration linearly increased from 2.4 to 9.2 g/L, while the ethanol yield per dry weight of biomass decreased from 242 to 185 mg/g, with increasing the ratio of biomass to acid solution from 1 to 5% (w/v). The bioethanol yield estimated was approximately 7,400~9,600 kg/ha/year, and indicated that Laminaria japonica is a promissing feedstock for bioethanol production.

Characteristics of Biorefinery Process Using Laminaria japonica for the Production of Carbohydrate and Reducing Sugar (Laminaria japonica를 이용하여 탄수화물과 환원당 생산을 위한 바이오리파이너리 공정 특성)

  • Kim, Ji Hyun;Ha, Jeong Hyub;Choi, Suk Soon;Park, Jong Moon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.627-632
    • /
    • 2019
  • In this study, Laminaria japonica was used as a substrate for a mixed aerobic microbial consortium. Laminaria japonica is well-known as a representative brown algal biomass possessing advantages of cheap cost, and high productivity and carbohydrate content. A biological saccharification system was established by inoculating and enriching the mixed aerobic microbial consortium. Production of the soluble carbohydrate and reducing sugar at different hydraulic retention times (HRT) was observed. The efficiency of saccharification increased according to the decrease of HRT. The maximum saccharification yield in a continuous biological pretreatment process was 17.96 and 4.30 g/L/day for the soluble carbohydrate and reducing sugar, respectively at the HRT of 1 day. In contrast, the staccharification yield decreased drastically at the HRT of 0.5 day. Experimental results indicate that Laminaria japonica is a promising material for the production of useful products, in particular for the saccharification through a biorefinery process. It can thus be concluded that a continuous biological pretreatment process using a mixed cultivation system can be successfully employed for the biorefinery technology.

An Analysis of Lipid Contents Produced from Three Different Microalgae Depending on the Lighting Period and Their Saccharification Conversion (빛의 조사 기간에 따른 세 가지 미세조류의 지질 함량 변화와 균체의 당화 전환율 비교)

  • Lim, Su-Bin;Jeong, Ji-Won;Yeon, Jae-Sung;Lee, Na-Kyung;Won, Jong-In
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.468-471
    • /
    • 2015
  • Microalgae have the advantages of being able to utilize the solar energy and culturing at a low cost. In particular, microalgae have a great potential in the production of biodiesel due to the high lipid content. Lipids produced from microalgae are converted to fatty acid methyl ester (FAME) by trans-esterification reaction and FAME is called a biodiesel in general. In addition, microalgae can also be utilized as a substrate for ethanol fermentation after saccharification reaction. In this study, three types of microalgae (Nanochloris, Dunaliella tertiolecta, Tetraselmis) were cultured and their lipid contents were compared. In addition, the effects of lighting period on the growth rate and lipid content were studied. Finally, the amounts of glucose produced from each saccharified microalgae were investigated. As a result, we demonstrated that D. tertiolecta has 43.6% higher lipid content and 22% higher glucose conversion than two others.

Enhanced Biomass Productivity of Freshwater microalga, Parachlorella kessleri for Fixation of Atmospheric CO2 Using Optimal Culture Conditions (최적 배양 조건을 이용한 CO2 제거 목적의 담수 미세조류 Parachlorella kessleri의 바이오매스 생산성 향상)

  • Z-Hun Kim;Sun Woo Hong;Jinu Kim;Byungrak Son;Mi-Kyung Kim;Yong Hwan Kim;Jin Hyun Seol;Su-Hwan Cheon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • This study attempted to improve the growth of the freshwater microalgae, Parachlorella kessleri, through the sequential optimization of culture conditions. This attempt aimed to enhance the microalgae's ability to fixate atmospheric CO2. Culture temperature and light intensity appropriate for microalgal growth were scanned using a high-throughput photobioreactor system. The supplied air flow rate varied from 0.05 to 0.3 vvm, and its effect on the growth rate of P. kessleri was determined. Next, sodium phosphate buffer was added to the culture medium (BG11) to enhance CO2 fixation by increasing the availability of CO2(HCO3-) in the culture medium. The results indicated that optimal culture temperature and light intensity were 20℃-25℃ and 300 μE/m2/s, respectively. Growth rates of P. kessleri under various air flow rates highly depended on the increase of the culture's flow rate and pH which determines CO2 availability. Adding sodium phosphate buffer to BG11 to maintain a constant neutral pH (7.0) improved microalgal growth compared to control conditions (BG11 without sodium phosphate). These results indicate that the CO2 fixation rate in the air could be enhanced via the sequential optimization of microalgal culture conditions.

Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid (루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구)

  • Yang, Seungdo;Kim, Hyungjoo;Park, Jae Hyun;Kim, Do Heui
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.232-237
    • /
    • 2022
  • Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.

Production of Fermentable Sugar from Lipid Extracted Algae using Hot Water Pretreatment (열수전처리를 이용한 탈지미세조류로부터 발효당 생산 공정 개발)

  • Lee, Jihyun;Shin, Seulgi;Choi, Kanghoon;Jo, Jaemin;Kim, JinWoo
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.443-447
    • /
    • 2016
  • The microalgae have cellulose as a main structural component of their cell wall and the lignin content in microalgae is much lower than other lignocellulosic biomass. Therefore, fermentable sugar production from microalgae (Tetraselmis KCTC 12236BP) can be carried out under pretreatment without high temperature and high pressure. It was investigated that the effect of hot-water pretreatment using sulfuric acid for lipid extracted algae which is expected to be a next generation biomass. The effects of three major variables including extraction temperature, acid concentration and time on the enzymatic hydrolysis were investigated. Among the tested variables, temperature and acid concentration showed significant effects and optimum pretreatment conditions for the economic operation criteria were obtained as follows: reaction temperature of $120^{\circ}C$, sulfuric acid concentration of 2 mol and pretreatment time of 40 min. Under the optimum conditions of acidic hot water pretreatment, experimentally obtained hydrolysis yield were 95.9% which showed about 2.1 fold higher compared with enzymatic hydrolysis process. Therefore, acid pretreatment under mild condition was proven to be an effective method for fermentable sugar production from lipid extracted microalgae.

Effects of Different Heterotrophic Bacteria on Phototrophic Activity of Chlorella sp. MF1907 (Chlorella sp. MF1907의 광합성 활성에 미치는 다양한 종속영양세균의 영향)

  • Noh, Young Jin;Jeong, So-Yeon;Kim, Tae Gwan
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.101-110
    • /
    • 2021
  • Interactions between microalgae and heterotrophic bacteria are common in natural environments. This study investigated the effect of heterotrophic bacteria on the activity of the photosynthetic eukaryotic alga Chlorella sp. MF1907 when cocultured. A total of 31 heterotrophic bacterial isolates belonging to different genera were cocultured with MF1907. Interactions of the alga with Agromyces, Rhodococcus, Sphingomonas, Hyphomicrobium, Rhizobium, and Pseudomonas were positive, while those with Burkholderia, Paraburkholderia, Micrococcus, Arthrobacter, Mycobacterium, Streptomyces, Pedobacter, Mucilaginibacter, Fictibacillus, Tumebacillus, Sphingopyxis, and Erythrobacter were negative (p < 0.05). A turnover experiment demonstrating a switch from heterotrophic to autotrophic activity of MF1907 was performed using 16 isolates exhibiting apparent effects (positive, negative, or neutral). Compared with the results of the coculture experiment, eight isolates exhibited the same outcomes, while the others did not. Consistently, Pseudomonas and Agromyces showed a remarkable positive effect on MF1907 activity, and Burkholderia, Streptomyces, and Erythrobacter had a marked negative effect. Our results suggest that it may be possible to use the isolates for controlling populations of microalgae in natural and engineered environments.