DOI QR코드

DOI QR Code

Biochemical Composition of a Korean Domestic Microalga Chlorella vulgaris KNUA027

한국 토착 미세조류 클로렐라 불가리스 KNUA027 균주의 생화학적 조성

  • Hong, Ji Won (Marine Plants Team, National Marine Biodiversity Institute of Korea) ;
  • Kim, Oh Hong (Advanced Bio-resource Research Center) ;
  • Jo, Seung-Woo (Department of Energy Science) ;
  • Kim, Hyeon (Advanced Bio-resource Research Center) ;
  • Jeong, Mi Rang (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Park, Kyung Mok (Department of Pharmaceutical Engineering) ;
  • Lee, Kyoung In (Biotechnology Industrialization Center, Dongshin University) ;
  • Yoon, Ho-Sung (Advanced Bio-resource Research Center)
  • 홍지원 (국립해양생물자원관 해양식물팀) ;
  • 김오홍 (경북대학교 신바이오소재연구소) ;
  • 조승우 (경북대학교 에너지과학과) ;
  • 김현 (경북대학교 신바이오소재연구소) ;
  • 정미랑 (경북대학교 첨단복합 생명과학인력 양성사업단) ;
  • 박경목 (동신대학교 제약공학과) ;
  • 이경인 (동신대학교 생물자원산업화지원센터) ;
  • 윤호성 (경북대학교 신바이오소재연구소)
  • Received : 2015.12.21
  • Accepted : 2016.04.30
  • Published : 2016.09.28

Abstract

A unicellular green alga, Chlorella vulgaris KNUA027, was isolated from the roots of Panax ginseng seedlings and its biotechnological potential was investigated. The results of GC/MS analysis showed that C. vulgaris KNUA027 was rich in nutritionally important polyunsaturated fatty acids (PUFAs) such as alpha-linolenic acid (C18:3 ω3, 45.8%, 50.8 mg/g) and hexadecatrienoic acid (C16:3 ω3, 11.8%, 13.1 mg/g). Therefore, this Korean indigenous microalga may have potential as a source of omega-3 PUFAs. It was also found that the saturated palmitic acid (C16:0, 37.1%, 41.2 mg/g), which is suitable for biodiesel production, was one of the major fatty acids produced by strain KNUA027. The proximate analysis showed that the volatile matter content was 88.5%, and the ultimate analysis indicated that the higher heating value was 19.8 MJ/kg. Therefore, the results from this research with C. vulgaris KNUA027 may provide the basis for the production of microalgae-based biofuels and biomass feedstock.

인삼 유묘 뿌리 주변에서 자라고 있는 단세포 녹색 조류, 클로렐라 불가리스 KNUA027을 순수분리한 후 본 분리균주의 생물공학적 활용 가능성에대해조사를 실시하였다. 가스크로마토그래프/질량분석기를 이용한 분석 결과, 본 균주에는 영양학적으로 중요한 알파 리놀렌산(C18:3 ω3, 45.8%, 50.8 mg/g) 및 헥사데카트리엔산(C16:3 ω3, 11.8%, 13.1 mg/g)과 같은 다가불포화지방산이 풍부한 것으로 밝혀졌다. 따라서, 본 국내 토착 미세조류는 잠재적인 오메가-3 다가불포화지방산 원료가 될 수 있다고 사료된다. 또한, 바이오디젤 생산에 적합한 것으로 알려져 있는 팔미트산(C16:0, 37.1%, 41.2 mg/g) 역시 본 균주에 의해 주요 지방산 성분으로 생합성 되는 것으로 확인되었다. 근사분석 결과 KNUA027 균주의 휘발성물질 함량은 88.5%였으며, 원소분석 결과 고위발열량은 19.8 MJ/kg으로 나타났다. 본 KNUA027 균주를 이용한 연구결과는 미세조류 기반 바이오연료와 바이오매스 생산을 위한 기초자료 역할을 할 수 있을 것으로 기대된다.

Keywords

References

  1. Aguoru CU, Okibe PO. 2015. Content and composition of lipid produced by Chlorella vulgaris for biodiesel production. Adv. Life Sci. Technol. 36: 96-100.
  2. Ahmad F, Khan AU, Yasar A. 2013. The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Bot. 45: 461-465.
  3. Al-lwayzy SH, Yusaf T, Al-Juboori RA. 2014. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies 7: 1829-1851. https://doi.org/10.3390/en7031829
  4. Battah M, El-Ayoty Y, Abomohra A-EF, El-Ghany SA, Esmael A. 2013. Optimization of growth and lipid production of the Chlorophyte Microalga Chlorella vulgaris as a feedstock for biodiesel production. World Appl. Sci. J. 28: 1536-1543.
  5. Bi Z, He BB. 2013. Characterization of microalgae for the purpose of biofuel production. Biol. Eng. Trans. 56: 1529-1539.
  6. Borowitzka MA. 2013. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 25: 743-756. https://doi.org/10.1007/s10811-013-9983-9
  7. Cheirsilp B, Suwannarat W, Niyomdecha R. 2011. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N. Biotechnol. 28: 362-368. https://doi.org/10.1016/j.nbt.2011.01.004
  8. Chu FF, Chu PN, Cai PJ, Li WW, Lam PK, Zeng RJ. 2013. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour. Technol. 134: 341-346. https://doi.org/10.1016/j.biortech.2013.01.131
  9. Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48: 1146-1151.
  10. Friedl A, Padouvas E, Rotter H, Varmuza K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544: 191-198. https://doi.org/10.1016/j.aca.2005.01.041
  11. Frumento D, Casazza AA, Al Arni S, Converti A. 2013. Cultivation of Chlorella vulgaris in tubular photobioreactors: a lipid source for biodiesel production. Biochem. Eng. J. 81: 120-125. https://doi.org/10.1016/j.bej.2013.10.011
  12. Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-274. https://doi.org/10.1007/s10295-008-0495-6
  13. Hamed SR. 2015. Complementary production of biofuels by the green alga Chlorella vulgaris. Int. J. Renew. Energy Res. 18: 936-943.
  14. Heredia-Arroyo T, Wei W, Ruan R, Hu B. 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35: 2245-2253. https://doi.org/10.1016/j.biombioe.2011.02.036
  15. Hoshina R, Iwataki M, Imamura N. 2010. Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycol. Res. 58: 188-201. https://doi.org/10.1111/j.1440-1835.2010.00579.x
  16. Huntley ME, Redalje DG. 2007. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation Adapt. Strateg. Glob. Chang. 12: 573-608. https://doi.org/10.1007/s11027-006-7304-1
  17. Illman AM, Scragg AH, Shales SW. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27: 631-635. https://doi.org/10.1016/S0141-0229(00)00266-0
  18. Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B, Schwarz R, et al. 2010. The ITS2 Database III—sequences and structures for phylogeny. Nucleic Acids Res. 38: D275-D279. https://doi.org/10.1093/nar/gkp966
  19. Knothe G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36: 364-373. https://doi.org/10.1016/j.pecs.2009.11.004
  20. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24: 815-820.
  21. Lohman EJ, Gardner RD, Pedersen T, Peyton BM, Cooksey KE, Gerlach R. 2015. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris. Biotechnol. Biofuels 8: 1. https://doi.org/10.1186/s13068-014-0179-6
  22. Mallick N, Mandal S, Singh AK, Bishai M, Dash A. 2011. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J. Chem. Technol. Biotechnol. 87: 137-145.
  23. Mariotti F, Tomé D, Mirand PP. 2008. Converting nitrogen into protein—beyond 6.25 and Jones' factors. Crit. Rev. Food Sci. Nutr. 48: 177-184. https://doi.org/10.1080/10408390701279749
  24. Marudhupandi T, Gunasundari V, Kumar TT, Tissera KR. 2014. Influence of citrate on Chlorella vulgaris for biodiesel production. Biocatal. Agric. Biotechnol. 3: 386-389.
  25. Mehta LR, Dworkin RH, Schwid SR. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5: 82-92.
  26. Mitra D, van Leeuwen JH, Lamsal B. 2012. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 31: 40-48.
  27. O’Donnell K. 1993. Fusarium and its near relatives. pp. 225-233. In Reynolds DR, Taylor JW (eds.), The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CBA International, Wallingford.
  28. Packaged Facts. 2012. The Global Market for EPA/DHA Omega-3 Products. Published online at: http://www.packagedfacts.com/Global-EPA-DHA-7145087/(accessed on 7 April 2016).
  29. Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P. 2013. Highly valuable microalgae: biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 40: 781-796. https://doi.org/10.1007/s10295-013-1281-7
  30. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.
  31. Rizzo AM, Prussi M, Bettucci L, Libelli IM, Chiaramonti D. 2013. Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl. Energy 102: 24-31. https://doi.org/10.1016/j.apenergy.2012.08.039
  32. Ross AB, Jones JM, Kubacki ML, Bridgeman T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99: 6494-6504. https://doi.org/10.1016/j.biortech.2007.11.036
  33. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1: 20-43. https://doi.org/10.1007/s12155-008-9008-8
  34. Scragg AH, Illman AM, Carden A, Shales SW. 2002. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23: 67-73. https://doi.org/10.1016/S0961-9534(02)00028-4
  35. Stein SE, Scott DR. 1994. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 5: 859-866. https://doi.org/10.1016/1044-0305(94)87009-8
  36. Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG. 2010. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1: 47-58. https://doi.org/10.4155/bfs.09.1
  37. Tabatabaei M, Karimi K, Sárvári Horváth I, Kumar R. 2015. Recent trends in biodiesel production. Biofuel Res. J. 7: 258-267.
  38. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  39. White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego.
  40. Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T. 2005. Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11: 1616-1623. https://doi.org/10.1261/rna.2144205
  41. Yeo I, Jeong J, Cho Y, Hong J, Yoon H-S, Kim SH, et al. 2011. Characterization and comparison of biodiesels made from Korean freshwater algae. Bull. Korean Chem. Soc. 32: 2830-2832. https://doi.org/10.5012/bkcs.2011.32.8.2830
  42. Yoon HS, Hackett JD, Bhattacharya D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. U.S.A. 99: 11724-11729. https://doi.org/10.1073/pnas.172234799
  43. Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C. 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 164: 1215-1224. https://doi.org/10.1007/s12010-011-9207-1

Cited by

  1. A Feasibility Study of Wastewater Treatment Using Domestic Microalgae and Analysis of Biomass for Potential Applications vol.11, pp.11, 2016, https://doi.org/10.3390/w11112294
  2. Are there any true marine Chlorella species? Molecular phylogenetic assessment and ecology of marine Chlorella-like organisms, including a description of Droopiella gen. nov. vol.17, pp.8, 2016, https://doi.org/10.1080/14772000.2019.1690597
  3. Isolation, Identification, and Biochemical Characteristics of a Cold-Tolerant Chlorella vulgaris KNUA007 Isolated from King George Island, Antarctica vol.8, pp.11, 2020, https://doi.org/10.3390/jmse8110935
  4. Removal of total nitrogen from wastewater by a combination of Chlorella sp. and audible sound vol.84, pp.10, 2016, https://doi.org/10.2166/wst.2021.345