Browse > Article
http://dx.doi.org/10.4014/mbl.1512.12008

Biochemical Composition of a Korean Domestic Microalga Chlorella vulgaris KNUA027  

Hong, Ji Won (Marine Plants Team, National Marine Biodiversity Institute of Korea)
Kim, Oh Hong (Advanced Bio-resource Research Center)
Jo, Seung-Woo (Department of Energy Science)
Kim, Hyeon (Advanced Bio-resource Research Center)
Jeong, Mi Rang (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Park, Kyung Mok (Department of Pharmaceutical Engineering)
Lee, Kyoung In (Biotechnology Industrialization Center, Dongshin University)
Yoon, Ho-Sung (Advanced Bio-resource Research Center)
Publication Information
Microbiology and Biotechnology Letters / v.44, no.3, 2016 , pp. 400-407 More about this Journal
Abstract
A unicellular green alga, Chlorella vulgaris KNUA027, was isolated from the roots of Panax ginseng seedlings and its biotechnological potential was investigated. The results of GC/MS analysis showed that C. vulgaris KNUA027 was rich in nutritionally important polyunsaturated fatty acids (PUFAs) such as alpha-linolenic acid (C18:3 ω3, 45.8%, 50.8 mg/g) and hexadecatrienoic acid (C16:3 ω3, 11.8%, 13.1 mg/g). Therefore, this Korean indigenous microalga may have potential as a source of omega-3 PUFAs. It was also found that the saturated palmitic acid (C16:0, 37.1%, 41.2 mg/g), which is suitable for biodiesel production, was one of the major fatty acids produced by strain KNUA027. The proximate analysis showed that the volatile matter content was 88.5%, and the ultimate analysis indicated that the higher heating value was 19.8 MJ/kg. Therefore, the results from this research with C. vulgaris KNUA027 may provide the basis for the production of microalgae-based biofuels and biomass feedstock.
Keywords
Biofuel feedstock; Chlorella vulgaris; microalga; PUFA;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aguoru CU, Okibe PO. 2015. Content and composition of lipid produced by Chlorella vulgaris for biodiesel production. Adv. Life Sci. Technol. 36: 96-100.
2 Borowitzka MA. 2013. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 25: 743-756.   DOI
3 Ahmad F, Khan AU, Yasar A. 2013. The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Bot. 45: 461-465.
4 Al-lwayzy SH, Yusaf T, Al-Juboori RA. 2014. Biofuels from the fresh water microalgae Chlorella vulgaris (FWM-CV) for diesel engines. Energies 7: 1829-1851.   DOI
5 Battah M, El-Ayoty Y, Abomohra A-EF, El-Ghany SA, Esmael A. 2013. Optimization of growth and lipid production of the Chlorophyte Microalga Chlorella vulgaris as a feedstock for biodiesel production. World Appl. Sci. J. 28: 1536-1543.
6 Bi Z, He BB. 2013. Characterization of microalgae for the purpose of biofuel production. Biol. Eng. Trans. 56: 1529-1539.
7 Cheirsilp B, Suwannarat W, Niyomdecha R. 2011. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N. Biotechnol. 28: 362-368.   DOI
8 Chu FF, Chu PN, Cai PJ, Li WW, Lam PK, Zeng RJ. 2013. Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour. Technol. 134: 341-346.   DOI
9 Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48: 1146-1151.
10 Friedl A, Padouvas E, Rotter H, Varmuza K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544: 191-198.   DOI
11 Heredia-Arroyo T, Wei W, Ruan R, Hu B. 2011. Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenergy 35: 2245-2253.   DOI
12 Frumento D, Casazza AA, Al Arni S, Converti A. 2013. Cultivation of Chlorella vulgaris in tubular photobioreactors: a lipid source for biodiesel production. Biochem. Eng. J. 81: 120-125.   DOI
13 Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-274.   DOI
14 Illman AM, Scragg AH, Shales SW. 2000. Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Technol. 27: 631-635.   DOI
15 Hamed SR. 2015. Complementary production of biofuels by the green alga Chlorella vulgaris. Int. J. Renew. Energy Res. 18: 936-943.
16 Hoshina R, Iwataki M, Imamura N. 2010. Chlorella variabilis and Micractinium reisseri sp. nov. (Chlorellaceae, Trebouxiophyceae): Redescription of the endosymbiotic green algae of Paramecium bursaria (Peniculia, Oligohymenophorea) in the 120th year. Phycol. Res. 58: 188-201.   DOI
17 Huntley ME, Redalje DG. 2007. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation Adapt. Strateg. Glob. Chang. 12: 573-608.   DOI
18 Koetschan C, Förster F, Keller A, Schleicher T, Ruderisch B, Schwarz R, et al. 2010. The ITS2 Database III—sequences and structures for phylogeny. Nucleic Acids Res. 38: D275-D279.   DOI
19 Knothe G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36: 364-373.   DOI
20 Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24: 815-820.
21 Marudhupandi T, Gunasundari V, Kumar TT, Tissera KR. 2014. Influence of citrate on Chlorella vulgaris for biodiesel production. Biocatal. Agric. Biotechnol. 3: 386-389.
22 Lohman EJ, Gardner RD, Pedersen T, Peyton BM, Cooksey KE, Gerlach R. 2015. Optimized inorganic carbon regime for enhanced growth and lipid accumulation in Chlorella vulgaris. Biotechnol. Biofuels 8: 1.   DOI
23 Mallick N, Mandal S, Singh AK, Bishai M, Dash A. 2011. Green microalga Chlorella vulgaris as a potential feedstock for biodiesel. J. Chem. Technol. Biotechnol. 87: 137-145.
24 O’Donnell K. 1993. Fusarium and its near relatives. pp. 225-233. In Reynolds DR, Taylor JW (eds.), The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CBA International, Wallingford.
25 Mariotti F, Tomé D, Mirand PP. 2008. Converting nitrogen into protein—beyond 6.25 and Jones' factors. Crit. Rev. Food Sci. Nutr. 48: 177-184.   DOI
26 Mehta LR, Dworkin RH, Schwid SR. 2009. Polyunsaturated fatty acids and their potential therapeutic role in multiple sclerosis. Nat. Clin. Pract. Neurol. 5: 82-92.
27 Mitra D, van Leeuwen JH, Lamsal B. 2012. Heterotrophic/mixotrophic cultivation of oleaginous Chlorella vulgaris on industrial co-products. Algal Res. 31: 40-48.
28 Packaged Facts. 2012. The Global Market for EPA/DHA Omega-3 Products. Published online at: http://www.packagedfacts.com/Global-EPA-DHA-7145087/(accessed on 7 April 2016).
29 Pignolet O, Jubeau S, Vaca-Garcia C, Michaud P. 2013. Highly valuable microalgae: biochemical and topological aspects. J. Ind. Microbiol. Biotechnol. 40: 781-796.   DOI
30 Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.
31 Scragg AH, Illman AM, Carden A, Shales SW. 2002. Growth of microalgae with increased calorific values in a tubular bioreactor. Biomass Bioenergy 23: 67-73.   DOI
32 Rizzo AM, Prussi M, Bettucci L, Libelli IM, Chiaramonti D. 2013. Characterization of microalga Chlorella as a fuel and its thermogravimetric behavior. Appl. Energy 102: 24-31.   DOI
33 Ross AB, Jones JM, Kubacki ML, Bridgeman T. 2008. Classification of macroalgae as fuel and its thermochemical behaviour. Bioresour. Technol. 99: 6494-6504.   DOI
34 Tabatabaei M, Karimi K, Sárvári Horváth I, Kumar R. 2015. Recent trends in biodiesel production. Biofuel Res. J. 7: 258-267.
35 Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, et al. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1: 20-43.   DOI
36 Stein SE, Scott DR. 1994. Optimization and testing of mass spectral library search algorithms for compound identification. J. Am. Soc. Mass Spectrom. 5: 859-866.   DOI
37 Stephenson AL, Dennis JS, Howe CJ, Scott SA, Smith AG. 2010. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks. Biofuels 1: 47-58.   DOI
38 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
39 White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. pp. 315-322. In Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.), PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego.
40 Zheng H, Yin J, Gao Z, Huang H, Ji X, Dou C. 2011. Disruption of Chlorella vulgaris cells for the release of biodiesel-producing lipids: a comparison of grinding, ultrasonication, bead milling, enzymatic lysis, and microwaves. Appl. Biochem. Biotechnol. 164: 1215-1224.   DOI
41 Wolf M, Achtziger M, Schultz J, Dandekar T, Müller T. 2005. Homology modeling revealed more than 20,000 rRNA internal transcribed spacer 2 (ITS2) secondary structures. RNA 11: 1616-1623.   DOI
42 Yeo I, Jeong J, Cho Y, Hong J, Yoon H-S, Kim SH, et al. 2011. Characterization and comparison of biodiesels made from Korean freshwater algae. Bull. Korean Chem. Soc. 32: 2830-2832.   DOI
43 Yoon HS, Hackett JD, Bhattacharya D. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. U.S.A. 99: 11724-11729.   DOI