• Title/Summary/Keyword: 조기강도

Search Result 356, Processing Time 0.021 seconds

Evaluation of Early Compressive Strength of Concrete Using Early Strength Improvement Type Cement and Early Strength Activator (조기강도 개선형 시멘트 및 초기수화 촉진 혼화제를 사용한 콘크리트의 조기압축강도 발현특성 평가)

  • Park, Gyu-Yeon;Kim, Gyu-Yong;Choe, Gyoeng-Choel
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.4
    • /
    • pp.322-328
    • /
    • 2014
  • In this study, revelation performance of concrete at early age according to types of cement, water reducing ratio of high performance superplasticizer and mixing of accelerator for early hydration was examined aiming for reduction of construction period of framework through securing strength at early age of concrete. It was observed that strength at early age, 5MPa in 12hours, 14MPa in 18hours, is secured by early strength improvement type cement and using promotion admixture for early hydration which are Sodium persulfate, Potassium hydroxide. Therefore cost reduction is expected to be possible in construction site by reducing construction period of frame work.

A Study on the improvement of Strength delay according to Low Temperature of Cold Weather Concrete (한중콘크리트의 저온에 의한 강도지연 개선연구)

  • Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2012
  • The cold weather concrete poured in the winter season can cause the problem of the Due to recent high-rise building is made. In this research, the nominal mix of the early strength in concrete tried to be set through the mixing proportion experiment for each empirical variable and each component strength properties for the early strength improvement tries to be examined. In the cold weather concrete experiment, the cement and high early strength (type3) cement improving in OPC than OPC was excellent. The polycarboxylic acid based compound was exposed to be excellent in the intensity revelation properties. Because the using of the fly ash was disadvantageous it was excluded from this experiment. It showed the optimum temperature for the intensity revelation up over $12^{\circ}C$.

  • PDF

A Study on Properties of Early Strength Development of the Concrete (콘크리트의 조기강도 발현특성에 관한 연구)

  • Kang, Chang-Woon;Lee, Jae-Sam;Kim, Jung-Sik;Sung, Yong-Hwan;Ryu, Deug-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.541-544
    • /
    • 2008
  • Recently, due to the increase of high-rise buildings construction, many researches for making harden of concrete earlier and remove of forms faster are being performed to reduce construction period. The purpose of this study is to analysis which mixing condition and curing temperature of early strength concrete. Porperties of concrete by the different factors, such as the type of active admixtures, mineral admixtures, curing temperature, the amount of binder, etc. Through the test of concrete using the different type of admixture, PC type was more excellent than PNS type admixture. The concrete Strength remarkably will be able to confirm that decreases from temperature below 12$^{\circ}C$.

  • PDF

Influence of $Na_2SO_4$ on Cement-flyash Paste and the Strength Development of Concrete ($Na_2SO_4$가 시멘트-플라이애쉬 페이스트 및 콘크리트 강도에 미치는 영향)

  • Lee, Chin-Yong;Bae, Sung-Yong;Song, Jong-Taek
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.85-94
    • /
    • 1999
  • It was investigated to evaluate the characteristics of cement-flyash paste which was affected the replacement level, curing method and chemical admixtures. The strength of cement-flyash paste was lower than that of cement paste only and the differences increased with increasing the replacement level. However, in steam curing, the strength of cement-flyash pastes was improved and specially, the early strength was effectively increased. The inclusion of $Na_2SO_4$ increased the early strength of cement-flyash paste. In addition, the strength of concrete including 30% of fly ash and $Na_2SO_4$ has improved and obtained the highest strength compared to other concrete mixes.

Early Strength Development Properties of Concrete using Early Strength Improvement Type Cement (조기강도 개선형 시멘트를 사용한 콘크리트의 조기강도 발현 특성)

  • Park, Kyu-Yeon;Kim, Yong-Ro;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2013
  • In this research, early strength development performance of early strength improvement type ordinary cement which is economically feasible early strength cement(Type III), improved early strength ordinary cement(Type I), was estimated to derive minimum curing temperature and proper water to cement ratio according to cement for early strength development through examination of fresh concrete properties and compressive strength according to water to cement ratio curing $10^{\circ}C$, $15^{\circ}C$ and $20^{\circ}C$ to suggest fundamental data for practical use of early strength concrete.

A Study on the Optimum Mix Proportion for Early Strength of Concrete in the Upper Layers of High Rise Building (Part II - 80MPa) (초고층 빌딩용 상층부 콘크리트의 조기강도 확보를 위한 최적배합 도출에 관한 연구 (Part II - 80MPa를 중심으로))

  • Jeon, In-Ki;Park, Yong-Kyu;Lee, Joo-Hun;Choi, Myung-Hwa;Yoon, Gi-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.325-328
    • /
    • 2008
  • Recently increasing interest in high-rise building around the world for more than 100 floor, the trend is the increasing use of high-strength and high-flowable concrete so as of productivity improvements and cost savings to improve the performance of the early strength development. This study is to reach the optimal combination by reviewing the performance of high-rise building which is required. The results, lower the ratio of W/B was an increase in compressive strength and early strength in the use of admixture decreased in the combination of higher replacement ratio of admixture.

  • PDF

An Experimental Study for Improving the Early Strength of Ternary Blended Cement Mortar (삼성분계 혼합시멘트 모르타르의 조기강도 향상을 위한 실험적 연구)

  • Bae, Jun-Young;Jang, Young-Il
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.110-116
    • /
    • 2012
  • Recently, the development and field applications of Ternary Blended Cement(TBC), where blast furnace slag and fly ash are recycled in Ordinary Portland Cement(OPC) in order to obtain improvements in the durability and heat of hydration reduction performance in large scale civil structures, have been increasing. Also, there are continuing efforts by construction companies to reduce the construction time with the aim of reducing construction costs. Therefore, there is a need to improve the performance of TBC, which has a relatively slow early strength development. In order to improve the early strength of TBC mortar, the compressive strength, SO3 content, and SEM analysis was determined in this study on mortar with the fineness and content of blast furnace slag and anhydrite regulated. As a result, to secure the early strength of TBC mortar, using blast furnace slag with a fineness of approximately $4,200cm^2/g$, adding 3.5% anhydrite with a fineness of approximately $10,000cm^2/g$, and managing the $SO_3$ content to roughly 3.72% was found to provide the most outstanding early strength properties.

Development of Early-Strength of High-Strength Concrete According to Curing Temperature for Application of System Form (시스템 거푸집 적용을 위한 고강도 콘크리트의 양생온도별 조기강도 발현성상)

  • 김무한;이승훈;강석표;길배수;주지현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.536-543
    • /
    • 2001
  • Nowadays, with high-stoned and large-sized of structures, high-strength concrete is applicable to various methods. When high-strength concrete is used jointly with system form, seizing on the development of compressive strength at early age is very important in aspect of construction process. Because system form is stripped more faster than ordinary form. But, we have little data of compressive strength before system-form is stripped, and it isn't yet established that decision criterion of the time when system-form is stripped. So this paper deals with the development of compressive strength at early age before system-form is stripped. In this study, the experimental results indicate the boundary of curing temperature and mixing factor that is able to get needful early-strength in the application of slip-form method, and curing temperature must be kept over 15 degrees in winter season.

An Experimental Study on the Early Strength Development Properties of Concrete According to Curing Condition and Used Materials (사용재료 및 양생조건에 따른 콘크리트의 조기강도발현 특성에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Lee, Ji-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.721-729
    • /
    • 2008
  • The purpose of this study is to investigate the engineering properties of concrete for the early strength development. As a result of reviewing it by establishing each experimental factor and level, the cement had more excellent quality performance in CHC and HESPC than OPC. This study has shown that the PC series admixture was more excellent in side of elapsed time (aging) and early strength development than PNS series admixture. In addition, there was much difference according to the curing temperature, but the early strength development showed the considerable vulnerability in curing temperature below $12^{\circ}C$. To satisfy the strength requirements of 5 MPa/18 hr this study has shown that it needed the curing temperature over $17^{\circ}C$ to the minimum in OPC, over $14^{\circ}C$ in CHC, and over $11^{\circ}C$ in HESPC. On the other hand, as to the strength properties according to W/C, the less W/C was, the more strength development was excellent. If this study is to be used in construction filed on a basis of this result, this researcher is considered as possible of the economic execution of construction by advancing the early strength and by the reduction of construction cost according to shortening construction duration.

Study on the Development of Accelerator for Early Strength of Concrete using Industrial by-product (산업부산물을 활용한 조기강도 촉진제 기술 개발을 위한 연구)

  • Lee, Ji-Hwan;Lee, Jin-Woo;Lee, Jae-Sam;Lee, Kang-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this study utilize industry product for OPC(ordinary portland cement) and BFS(blast furnace slag) mixing concrete early age compressive strength elevation and executed study for high strength binder. Association ratio of industry product for high strength binder manufacture is Titanogypsum (4) : Limestone (3) : Waterworks Sludge by ratio of (3) as it is proper move. high strength binder mixing rate appeared that (7~9) % are proper via preliminary test. Could confirm that display high compressive strength incidence rate in early age than plain harmony according as mix high strength binder mixing concrete compressive strength high strength binder. Also, high strength binder generality that give function than high strength binder used in existing displayed more excellent intensity, and compressive strength displayed result that multiply single breadth according as high strength binder substitute that give function increases.

  • PDF