산업용 IoT (IIoT)는 최근들어 제조 시스템의 중요한 구성 요소로 간주된다. IIoT를 통해 시설에서 감지된 데이터를 수집하여 작동 조건을 적절하게 분석하고 처리한다. 여기서 비정상적인 데이터는 전체 시스템의 안전성 및 생산성을 위해 신속하게 탐지되어야한다. 기존 임계 값 기반 방법은 임계 값 미만의 유휴 오류 또는 비정상적인 동작을 감지 할 수 없으므로 IIoT에 적합하지 않다. 본 논문에서는 예측 구간과 우선 순위기반 스케줄링을 이용한 분할 선형 회귀 분석을 기반으로 비정상적인 데이터를 검출하는 새로운 방법을 제안한다. 시뮬레이션 결과 제안한 기법은 비정상적인 데이터 검출 속도에서 임계치, 일반 선형 회귀 또는 FCFS 정책을 사용하는 기존의 기법보다 우수함을 알 수 있었다.
제품의 결함 탐지를 위한 머신 비전 시스템에 딥러닝을 적용하기 위해서는 다양한 결함 사례에 대한 방대한 학습 데이터가 필요하다. 하지만 실제 제조 산업에서는 결함의 종류에 따른 데이터 불균형이 생기기 때문에 결함 사례를 일반화할 수 있을 만큼의 제품 이미지를 수집하기 위해서는 많은 시간이 소요된다. 본 논문에서는 적은 데이터로도 학습이 가능한 샴 신경망을 제품 결함 탐지에 적용하고, 제품 결함 이미지 데이터의 속성을 고려하여 이미지 쌍 구성법과 대조 손실 함수를 수정하였다. AUC-ROC로 샴 신경망의 임베딩 성능을 간접적으로 확인한 결과, 같은 제품끼리만 쌍을 구성하고 결함이 있는 제품 간에는 쌍을 구성하였을 때, 그리고 지수 대조 손실로 학습하였을 때 좋은 임베딩 성능을 보였다.
블록체인은 탈집중화, 위변조 방지, 추적 가능, 노드 간 공동 유지 및 보수가 가능한 데이터베이스로서 서로 신뢰하지 않은 노드 간 통신 신뢰 문제를 해결할 수 있는 점 대 점 통신 네트워크를 실현할 수 있다. 최근 몇 년 동안, 블록체인 기술은 지속적으로 발전하여 데이터 보안 문제를 해결하기 위한 중요한 기술로 주목받고 있다. 블록체인의 응용은 최초의 디지털 화폐 영역에서 금융·정무·공업 제조 영역으로 확대되고 있다. 블록체인의 특성에 따라 블록체인의 성능은 분산형 데이터 통신에 비해 크게 떨어지고 처리량이 제한되는 문제점이 존재한다. 본 논문에서는 최근 연구되고 있는 블록체인의 보안 구조 및 성능 분석에 대해 조사하고, 기존에 연구되었던 기술과 비교하여 블록체인의 안전성을 유지하며 성능을 향상시키는 방법에 대해 고찰한다. 이후 유향 비순환 그래프 (DAG: Directed Acyclic Graph) 및 샤딩 (Sharding)을 이용하여 안전성과 성능을 강화시키는 방법에 대해 제안한다. 제안하는 시스템은 DAG를 사용하여 위변조 방지 및 처리 속도 향상의 이점을 가지고 있으며, 샤딩을 사용함으로써 데이터 처리량을 향상시킨다. 마지막으로 제안하는 시스템은 기존 블록체인과 비교하여 안정성과 데이터 처리량 측면에서 비교 분석을 진행한다.
최근 4차 산업혁명으로 인해 제조업계에서는 제조업의 인공지능을 접목시켜 효율성을 극대화하는 스마트 팩토리 붐이 일어나고 있다. 특히 자동차 부품 제조 및 생산에 널리 적용되어 불량을 낮추는 연구들이 활발히 진행되고 있다. 이에 본 연구에서는 머신러닝을 통한 불량예측을 시트 폼 발포공정에 접목시켜 발포공정의 효율성을 극대화하는 연구를 진행하였다. 자동차 시트폼 에서 주로 사용되는 폴리우레탄 폼(polyurethane foam)은 폴리올(polyol, 이하 POL)과 이소시아네이트(isocyanate, 이하 ISO)를 혼합 및 발포하는 공정으로 제조되며, 각 원료의 혼합비율과 온도의 변화에 따라 제품의 특성이 변화한다. 이에 본 연구에서는 발포공정에서 수집되는 인자별 데이터값을 머신러닝에 적용하여 불량을 예측하고자 한다. 머신러닝에 사용되는 알고리즘으로는 의사결정트리, kNN, 앙상블 알고리즘을 사용하였으며 학습은 5,147개의 데이터를 사용하였으며, 학습된 결과를 1,000개의 검증용 데이터에 적용한 결과, 세 알고리즘 중 앙상블 알고리즘에서 최대 98.5 %의 정확도를 확인할 수 있었다. 이러한 결과를 통해 발포공정에서 실시간으로 수집되는 데이터를 통해 현재 생산되는 부품의 불량 여부를 확인할 수 있으며, 나아가 각 인자를 조절하여 불량률을 개선할 수 있음을 짐작할 수 있다고 사료된다.
본 연구에선 제조 공정에서의 양/불량 판정을 위한 오토인코더(AE) 기반의 이상 탐지 방법들의 비교 분석과 우수한 성능을 보인 이상치 판별 기준을 제시한다. 제조 현장의 특성상 불량 데이터의 수는 적고, 불량의 형태가 다양하다. 이러한 특성은 정상과 비정상 데이터를 모두 활용하는 인공지능 기반 양/불량 판정 모델의 성능을 저하시키고, 성능 향상을 위한 비정상 데이터의 추가 확보에 시간과 비용을 발생시킨다. 이러한 문제를 해결하기 위해서 정상 데이터만을 이용해 이상 탐지를 수행하는 AE, VAE 등 AE 기반의 모델에 관한 연구들이 진행되고 있다. 본 연구에서는 Convolutional AE, VAE, Dilated VAE 모델을 기반으로 잔차 이미지에 대한 통계치와 MSE, 정보 엔트로피를 이상치 판별 기준으로 선정하여 각 모델의 성능을 비교 분석했다. 특히 Convolutional AE 모델에 대해서 범위 값을 적용했을 때, AUC PRC 0.9570, F1 Score 0.8812, AUC ROC 0.9548, 정확도 87.60%의 가장 우수한 성능을 보였다. 이는 기존의 이상치 판별 기준으로 자주 사용되었던 MSE에 비해 정확도 기준 약 20%P(Percentage Point)의 성능 향상을 보이며, 이상치 판별 기준에 따른 모델 성능 향상이 가능함을 확인하였다.
자율주행차 시대가 도래하면서 ECU (Electronic Control Unit)는 점차 고도화되고 있고, 이에 따라 차량에서 정확한 데이터를 추출하고 분석하려는 연구가 다양하게 시도되어 왔다. 그러나 ECU는 차량 제조사별로 상이한 프로토콜을 가지고 있어 상용 단말기로는 정확한 데이터 추출과 분석이 어렵다. 본 연구에서는 정확한 차량 데이터를 추출하기 위하여 전용 펌웨어를 개발하여 차량의 2019년 1월부터 2월의 실제 주행데이터 53,580건의 데이터를 추출하였으며, 20회가 넘는 실제 도로 주행을 통해서 데이터의 정확도를 검증하였다. 이러한 데이터를 바탕으로 실시간 연료 소비량 예측 모델의 정확도를 높이기 위하여 스태킹 앙상블 기법을 이용하였다. 본 연구에서는 베이스 모델로 Ridge, Lasso, XGBoost, LightGBM이 사용되고 메타 모델은 Ridge가 사용되었으며, 예측 성능은 MAE 0.011, RMSE 0.017로 최적의 결과를 보였다.
웨어러블 디바이스의 시장규모는 매년 가파르게 성장하고 있으며, 그 슈요에 발맞춰 전세계 제조업체들은 각자만의 특성을 살린 제품들을 선보이고 있다. 그중 스마트워치는 판매량 지분이 매우 높은 웨어러블 디바이스이며, 실시간으로 수집하는 정보를 활용해 사용자들에게 다양한 서비스를 제공하고 있다. 서비스의 품질은 스마트워치가 수집하는 데이터의 정확성에 의존하게 되는데, 상황에 따라 데이터 측정이 되지 않는 경우가 발생한다. 본 논문은 스마트워치가 수집하지 못한 데이터를 복원하는 방법을 소개한다. 데이터 복원을 위해 시간의 흐름에 따라 측정되는 운동궤적(Trajectory) 정보의 유사도 계산 방법을 다루며, 유사도에 따라 결측 구간을 복원하는 절차를 소개한다. 제안된 방법의 성능을 입증하기 위해 기계학습 알고리즘과의 비교실험을 진행하였으며 마지막으로 본 연구의 기대효과와 향후 연구 방향에 대해 다룬다.
제조공정의 대다수 장비들은 기존의 수동 설비에서 자동화 시스템이 접목된 설비로 전환되는 추세다. 공정 의사결정을 내리는 생산 관리자들은 전문적인 의사결정 기법의 관리 및 활용이 익숙하지 않기 때문에, 시스템 등의 방안을 이용하기보다 컨설팅 등의 외부 중개자를 통해 단발적인 조치를 받는 것이 일반적이다. 본 연구에서는 제조공정에서 발생하는 데이터 입력의 문제점과 의사결정 시스템을 통하여 납기일에 맞추어 납품이 가능한지, 공정 중에 사용되는 자재들의 수급 정보를 확인하고, 다중 입출력장치인 Android Application과 ATmega2560을 활용한 입력 모듈을 제안하였다. 이로 인하여, 제조 공정 생산업무의 작업효율 향상 및 공정 정보의 변경에 쉽게 대응 및 작업 공장 데이터 누락 감소하였으며, 생산성 향상으로 인한 납기일 준수 및 제품 만족도 향상으로 경영 개선에 이바지 하고자 한다.
Journal of the Korean Data and Information Science Society
/
제26권3호
/
pp.639-652
/
2015
현대의 제조공정은 컴퓨터의 발전과 통신 및 네트워크의 발달로 컴퓨터통합제조가 가능해졌다. 이로 인해 고품질 제품의 고속 생산공정이 확대되고, 공정에서 실시간으로 전송되는 다양한 품질변수들의 데이터 축적 또한 가능하게 되었다. 이를 관리하기 위해서는 다변량 통계적 공정관리 절차가 필요하다. 전통적으로 사용하는 다변량 관리도는 이상상태 발생시 이상신호를 주지만, 이상원인이 어떠한 변수에 어떠한 영향을 주는지에 대한 정보를 제공하지 않는다는 단점이 있다. 이를 보완하기 위해 데이터마이닝과 기계학습 기법을 이용할 수 있다. 이 논문에서는 의사결정나무 학습 기법을 이용한 다변량 공정관리 절차를 소개하고, 이변량인 경우 모의실험을 통하여 그 효율을 살펴보았다. 모의실험 결과를 살펴볼 때, 상관계수에 따라 이상상태 탐지 능력은 비슷한 것으로 나타났고, 이상상태에 대한 분류 정확도는 상관계수와 이상원인의 형태에 따라 차이가 있지만 기존의 다변량 관리도에서는 제공하지 않는 이상원인의 정보를 제공하는 장점이 있음을 알 수 있다.
본 논문에서는 스마트팩토리의 대량 제조 산업 중심의 실시간 통합제어 시스템과 리소스 메니지먼트를 위한 알고리즘과 수치 해석을 고려한다. 사이버 물리 시스템(CPS)상에서 전송되어지는 다양한 데이터들이 실시간으로 제어되어야 각각의 주소체계를 가진 단말과 플랫폼, 서비스로 묶여 진정한 스마트제조업이 실현될 것으로 기대하며, 기존의 연구결과로부터 새롭게 제안되어지는 최적화운용 알고리즘을 반영하여 패러미터별 증명과 자코비 연산에 의한 수치해석을 덧붙이게 된다. 최적의 운용 알고리즘을 센싱데이터에 의하여 결정을 하게 되고 이를 통한 CPS상에서 전송되는 현상을 구체적으로 제시한다. 또한 실험을 통해서 기존의 연구결과와 비교 검토함으로서 제시된 실시간 통합제어 시스템의 우수성을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.