• 제목/요약/키워드: 제조데이터

검색결과 918건 처리시간 0.027초

분할 선형 회귀 분선을 통한 IIoT의 빠른 비정상 데이터 탐지 (Fast Detection of Abnormal Data in IIoT with Segmented Linear Regression)

  • 이태호;김민우;이병준;김경태;윤희용
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제60차 하계학술대회논문집 27권2호
    • /
    • pp.101-102
    • /
    • 2019
  • 산업용 IoT (IIoT)는 최근들어 제조 시스템의 중요한 구성 요소로 간주된다. IIoT를 통해 시설에서 감지된 데이터를 수집하여 작동 조건을 적절하게 분석하고 처리한다. 여기서 비정상적인 데이터는 전체 시스템의 안전성 및 생산성을 위해 신속하게 탐지되어야한다. 기존 임계 값 기반 방법은 임계 값 미만의 유휴 오류 또는 비정상적인 동작을 감지 할 수 없으므로 IIoT에 적합하지 않다. 본 논문에서는 예측 구간과 우선 순위기반 스케줄링을 이용한 분할 선형 회귀 분석을 기반으로 비정상적인 데이터를 검출하는 새로운 방법을 제안한다. 시뮬레이션 결과 제안한 기법은 비정상적인 데이터 검출 속도에서 임계치, 일반 선형 회귀 또는 FCFS 정책을 사용하는 기존의 기법보다 우수함을 알 수 있었다.

  • PDF

제품 결함 탐지에서 데이터 부족 문제를 극복하기 위한 샴 신경망의 활용 (Siamese Neural Networks to Overcome the Insufficient Data Problems in Product Defect Detection)

  • 신강현;진교홍
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.108-111
    • /
    • 2022
  • 제품의 결함 탐지를 위한 머신 비전 시스템에 딥러닝을 적용하기 위해서는 다양한 결함 사례에 대한 방대한 학습 데이터가 필요하다. 하지만 실제 제조 산업에서는 결함의 종류에 따른 데이터 불균형이 생기기 때문에 결함 사례를 일반화할 수 있을 만큼의 제품 이미지를 수집하기 위해서는 많은 시간이 소요된다. 본 논문에서는 적은 데이터로도 학습이 가능한 샴 신경망을 제품 결함 탐지에 적용하고, 제품 결함 이미지 데이터의 속성을 고려하여 이미지 쌍 구성법과 대조 손실 함수를 수정하였다. AUC-ROC로 샴 신경망의 임베딩 성능을 간접적으로 확인한 결과, 같은 제품끼리만 쌍을 구성하고 결함이 있는 제품 간에는 쌍을 구성하였을 때, 그리고 지수 대조 손실로 학습하였을 때 좋은 임베딩 성능을 보였다.

  • PDF

데이터 처리량 향상을 위한 유향 비순환 그래프 기반의 멀티블록체인 시스템 (Multi-blockchain System based on Directed Acyclic Graph for Increasing Data Throughput)

  • 천호천;김태우;박종혁
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 춘계학술발표대회
    • /
    • pp.25-28
    • /
    • 2021
  • 블록체인은 탈집중화, 위변조 방지, 추적 가능, 노드 간 공동 유지 및 보수가 가능한 데이터베이스로서 서로 신뢰하지 않은 노드 간 통신 신뢰 문제를 해결할 수 있는 점 대 점 통신 네트워크를 실현할 수 있다. 최근 몇 년 동안, 블록체인 기술은 지속적으로 발전하여 데이터 보안 문제를 해결하기 위한 중요한 기술로 주목받고 있다. 블록체인의 응용은 최초의 디지털 화폐 영역에서 금융·정무·공업 제조 영역으로 확대되고 있다. 블록체인의 특성에 따라 블록체인의 성능은 분산형 데이터 통신에 비해 크게 떨어지고 처리량이 제한되는 문제점이 존재한다. 본 논문에서는 최근 연구되고 있는 블록체인의 보안 구조 및 성능 분석에 대해 조사하고, 기존에 연구되었던 기술과 비교하여 블록체인의 안전성을 유지하며 성능을 향상시키는 방법에 대해 고찰한다. 이후 유향 비순환 그래프 (DAG: Directed Acyclic Graph) 및 샤딩 (Sharding)을 이용하여 안전성과 성능을 강화시키는 방법에 대해 제안한다. 제안하는 시스템은 DAG를 사용하여 위변조 방지 및 처리 속도 향상의 이점을 가지고 있으며, 샤딩을 사용함으로써 데이터 처리량을 향상시킨다. 마지막으로 제안하는 시스템은 기존 블록체인과 비교하여 안정성과 데이터 처리량 측면에서 비교 분석을 진행한다.

머신러닝을 활용한 자동차 시트용 폴리우레탄 발포공정의 불량 예측 모델 개발 (A Development of Defeat Prediction Model Using Machine Learning in Polyurethane Foaming Process for Automotive Seat)

  • 최낙훈;오종석;안종록;김기선
    • 한국산학기술학회논문지
    • /
    • 제22권6호
    • /
    • pp.36-42
    • /
    • 2021
  • 최근 4차 산업혁명으로 인해 제조업계에서는 제조업의 인공지능을 접목시켜 효율성을 극대화하는 스마트 팩토리 붐이 일어나고 있다. 특히 자동차 부품 제조 및 생산에 널리 적용되어 불량을 낮추는 연구들이 활발히 진행되고 있다. 이에 본 연구에서는 머신러닝을 통한 불량예측을 시트 폼 발포공정에 접목시켜 발포공정의 효율성을 극대화하는 연구를 진행하였다. 자동차 시트폼 에서 주로 사용되는 폴리우레탄 폼(polyurethane foam)은 폴리올(polyol, 이하 POL)과 이소시아네이트(isocyanate, 이하 ISO)를 혼합 및 발포하는 공정으로 제조되며, 각 원료의 혼합비율과 온도의 변화에 따라 제품의 특성이 변화한다. 이에 본 연구에서는 발포공정에서 수집되는 인자별 데이터값을 머신러닝에 적용하여 불량을 예측하고자 한다. 머신러닝에 사용되는 알고리즘으로는 의사결정트리, kNN, 앙상블 알고리즘을 사용하였으며 학습은 5,147개의 데이터를 사용하였으며, 학습된 결과를 1,000개의 검증용 데이터에 적용한 결과, 세 알고리즘 중 앙상블 알고리즘에서 최대 98.5 %의 정확도를 확인할 수 있었다. 이러한 결과를 통해 발포공정에서 실시간으로 수집되는 데이터를 통해 현재 생산되는 부품의 불량 여부를 확인할 수 있으며, 나아가 각 인자를 조절하여 불량률을 개선할 수 있음을 짐작할 수 있다고 사료된다.

Comparative Analysis of Anomaly Detection Models using AE and Suggestion of Criteria for Determining Outliers

  • Kang, Gun-Ha;Sohn, Jung-Mo;Sim, Gun-Wu
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권8호
    • /
    • pp.23-30
    • /
    • 2021
  • 본 연구에선 제조 공정에서의 양/불량 판정을 위한 오토인코더(AE) 기반의 이상 탐지 방법들의 비교 분석과 우수한 성능을 보인 이상치 판별 기준을 제시한다. 제조 현장의 특성상 불량 데이터의 수는 적고, 불량의 형태가 다양하다. 이러한 특성은 정상과 비정상 데이터를 모두 활용하는 인공지능 기반 양/불량 판정 모델의 성능을 저하시키고, 성능 향상을 위한 비정상 데이터의 추가 확보에 시간과 비용을 발생시킨다. 이러한 문제를 해결하기 위해서 정상 데이터만을 이용해 이상 탐지를 수행하는 AE, VAE 등 AE 기반의 모델에 관한 연구들이 진행되고 있다. 본 연구에서는 Convolutional AE, VAE, Dilated VAE 모델을 기반으로 잔차 이미지에 대한 통계치와 MSE, 정보 엔트로피를 이상치 판별 기준으로 선정하여 각 모델의 성능을 비교 분석했다. 특히 Convolutional AE 모델에 대해서 범위 값을 적용했을 때, AUC PRC 0.9570, F1 Score 0.8812, AUC ROC 0.9548, 정확도 87.60%의 가장 우수한 성능을 보였다. 이는 기존의 이상치 판별 기준으로 자주 사용되었던 MSE에 비해 정확도 기준 약 20%P(Percentage Point)의 성능 향상을 보이며, 이상치 판별 기준에 따른 모델 성능 향상이 가능함을 확인하였다.

OBDII 데이터 기반의 실시간 연료 소비량 예측 모델 연구 (A Modeling of Realtime Fuel Comsumption Prediction Using OBDII Data)

  • 양희은;김도현;최호섭
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권2호
    • /
    • pp.57-64
    • /
    • 2021
  • 자율주행차 시대가 도래하면서 ECU (Electronic Control Unit)는 점차 고도화되고 있고, 이에 따라 차량에서 정확한 데이터를 추출하고 분석하려는 연구가 다양하게 시도되어 왔다. 그러나 ECU는 차량 제조사별로 상이한 프로토콜을 가지고 있어 상용 단말기로는 정확한 데이터 추출과 분석이 어렵다. 본 연구에서는 정확한 차량 데이터를 추출하기 위하여 전용 펌웨어를 개발하여 차량의 2019년 1월부터 2월의 실제 주행데이터 53,580건의 데이터를 추출하였으며, 20회가 넘는 실제 도로 주행을 통해서 데이터의 정확도를 검증하였다. 이러한 데이터를 바탕으로 실시간 연료 소비량 예측 모델의 정확도를 높이기 위하여 스태킹 앙상블 기법을 이용하였다. 본 연구에서는 베이스 모델로 Ridge, Lasso, XGBoost, LightGBM이 사용되고 메타 모델은 Ridge가 사용되었으며, 예측 성능은 MAE 0.011, RMSE 0.017로 최적의 결과를 보였다.

웨어러블 디바이스 서비스 향상을 위한 개인 맞춤형 데이터 복원 알고리즘 (Personalized Data Restoration Algorithm to Improve Wearable Device Service)

  • 박기군;배혜림
    • 한국빅데이터학회지
    • /
    • 제6권2호
    • /
    • pp.51-60
    • /
    • 2021
  • 웨어러블 디바이스의 시장규모는 매년 가파르게 성장하고 있으며, 그 슈요에 발맞춰 전세계 제조업체들은 각자만의 특성을 살린 제품들을 선보이고 있다. 그중 스마트워치는 판매량 지분이 매우 높은 웨어러블 디바이스이며, 실시간으로 수집하는 정보를 활용해 사용자들에게 다양한 서비스를 제공하고 있다. 서비스의 품질은 스마트워치가 수집하는 데이터의 정확성에 의존하게 되는데, 상황에 따라 데이터 측정이 되지 않는 경우가 발생한다. 본 논문은 스마트워치가 수집하지 못한 데이터를 복원하는 방법을 소개한다. 데이터 복원을 위해 시간의 흐름에 따라 측정되는 운동궤적(Trajectory) 정보의 유사도 계산 방법을 다루며, 유사도에 따라 결측 구간을 복원하는 절차를 소개한다. 제안된 방법의 성능을 입증하기 위해 기계학습 알고리즘과의 비교실험을 진행하였으며 마지막으로 본 연구의 기대효과와 향후 연구 방향에 대해 다룬다.

ATmega2560을 활용한 다중 입출력 제어 시스템 설계 (MIMO control system design using ATmega2560)

  • 정재훈;정수성;김영곤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.728-731
    • /
    • 2015
  • 제조공정의 대다수 장비들은 기존의 수동 설비에서 자동화 시스템이 접목된 설비로 전환되는 추세다. 공정 의사결정을 내리는 생산 관리자들은 전문적인 의사결정 기법의 관리 및 활용이 익숙하지 않기 때문에, 시스템 등의 방안을 이용하기보다 컨설팅 등의 외부 중개자를 통해 단발적인 조치를 받는 것이 일반적이다. 본 연구에서는 제조공정에서 발생하는 데이터 입력의 문제점과 의사결정 시스템을 통하여 납기일에 맞추어 납품이 가능한지, 공정 중에 사용되는 자재들의 수급 정보를 확인하고, 다중 입출력장치인 Android Application과 ATmega2560을 활용한 입력 모듈을 제안하였다. 이로 인하여, 제조 공정 생산업무의 작업효율 향상 및 공정 정보의 변경에 쉽게 대응 및 작업 공장 데이터 누락 감소하였으며, 생산성 향상으로 인한 납기일 준수 및 제품 만족도 향상으로 경영 개선에 이바지 하고자 한다.

  • PDF

의사결정나무를 이용한 다변량 공정관리 절차 (Multivariate process control procedure using a decision tree learning technique)

  • 정광영;이재헌
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권3호
    • /
    • pp.639-652
    • /
    • 2015
  • 현대의 제조공정은 컴퓨터의 발전과 통신 및 네트워크의 발달로 컴퓨터통합제조가 가능해졌다. 이로 인해 고품질 제품의 고속 생산공정이 확대되고, 공정에서 실시간으로 전송되는 다양한 품질변수들의 데이터 축적 또한 가능하게 되었다. 이를 관리하기 위해서는 다변량 통계적 공정관리 절차가 필요하다. 전통적으로 사용하는 다변량 관리도는 이상상태 발생시 이상신호를 주지만, 이상원인이 어떠한 변수에 어떠한 영향을 주는지에 대한 정보를 제공하지 않는다는 단점이 있다. 이를 보완하기 위해 데이터마이닝과 기계학습 기법을 이용할 수 있다. 이 논문에서는 의사결정나무 학습 기법을 이용한 다변량 공정관리 절차를 소개하고, 이변량인 경우 모의실험을 통하여 그 효율을 살펴보았다. 모의실험 결과를 살펴볼 때, 상관계수에 따라 이상상태 탐지 능력은 비슷한 것으로 나타났고, 이상상태에 대한 분류 정확도는 상관계수와 이상원인의 형태에 따라 차이가 있지만 기존의 다변량 관리도에서는 제공하지 않는 이상원인의 정보를 제공하는 장점이 있음을 알 수 있다.

실시간 통합제어를 위한 스마트 제조시스템의 새로운 최적화 알고리즘 설계 (Novel Optimal Controlling Algorithm for Real-time Integrated-control Smart Manufacturing System)

  • 이주연;김인영;정태경
    • 한국산업정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.1-10
    • /
    • 2016
  • 본 논문에서는 스마트팩토리의 대량 제조 산업 중심의 실시간 통합제어 시스템과 리소스 메니지먼트를 위한 알고리즘과 수치 해석을 고려한다. 사이버 물리 시스템(CPS)상에서 전송되어지는 다양한 데이터들이 실시간으로 제어되어야 각각의 주소체계를 가진 단말과 플랫폼, 서비스로 묶여 진정한 스마트제조업이 실현될 것으로 기대하며, 기존의 연구결과로부터 새롭게 제안되어지는 최적화운용 알고리즘을 반영하여 패러미터별 증명과 자코비 연산에 의한 수치해석을 덧붙이게 된다. 최적의 운용 알고리즘을 센싱데이터에 의하여 결정을 하게 되고 이를 통한 CPS상에서 전송되는 현상을 구체적으로 제시한다. 또한 실험을 통해서 기존의 연구결과와 비교 검토함으로서 제시된 실시간 통합제어 시스템의 우수성을 검증하였다.