• Title/Summary/Keyword: 제수의 역수 곱하기 알고리즘

Search Result 8, Processing Time 0.024 seconds

Quotitive Division and Invert and Multiply Algorithm for Fraction Division (분수 포함제와 제수의 역수 곱하기 알고리즘의 연결성)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.521-539
    • /
    • 2016
  • The structures of partitive and quotitive division of fractions are dealt with differently, and this led to using partitive division context for helping develop invert-multiply algorithm and quotitive division for common denominator algorithm. This approach is unlikely to provide children with an opportunity to develop an understanding of common structure involved in solving different types of division. In this study, I propose two approaches, measurement approach and isomorphism approach, to develop a unifying understanding of fraction division. From each of two approaches of solving quotitive division based on proportional reasoning, I discuss an idea of constructing a measure space, unit of which is a quantity of divisor, and another idea of constructing an isomorphic relationship between the measure spaces of dividend and divisor. These ideas support invert-multiply algorithm for quotitive as well as partitive division and bring proportional reasoning into the context of fraction division. I also discuss some curriculum issues regarding fraction division and proportion in order to promote the proposed unifying understanding of partitive and quotitive division of fractions.

On the Method of Using 1÷(divisor) in Quotitive Division for Comprehensive Understanding of Division of Fractions (분수 나눗셈의 통합적 이해를 위한 방편으로서 포함제에서 1÷(제수)를 매개로 하는 방법에 대한 고찰)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.22 no.4
    • /
    • pp.385-403
    • /
    • 2018
  • Fraction division can be categorized as partitive division, measurement division, and the inverse of a Cartesian product. In the contexts of quotitive division and the inverse of a Cartesian product, the multiply-by-the-reciprocal algorithm is drawn well out. In this study, I analyze the potential and significance of the method of using $1{\div}$(divisor) as an alternative way of developing the multiply-by-the-reciprocal algorithm in the context of quotitive division. The method of using $1{\div}$(divisor) in quotitive division has the following advantages. First, by this method we can draw the multiply-by-the-reciprocal algorithm keeping connection with the context of quotitive division. Second, as in other contexts, this method focuses on the multiplicative relationship between the divisor and 1. Third, as in other contexts, this method investigates the multiplicative relationship between the divisor and 1 by two kinds of reasoning that use either ${\frac{1}{the\;denominator\;of\;the\;divisor}}$ or the numerator of the divisor as a stepping stone. These advantages indicates the potential of this method in understanding the multiply-by-the-reciprocal algorithm as the common structure of fraction division. This method is based on the dual meaning of a fraction as a quantity and the composition of times which the current elementary mathematics textbook does not focus on. It is necessary to pay attention to how to form this basis when developing teaching materials for fraction division.

  • PDF

Different Approaches of Introducing the Division Algorithm of Fractions: Comparison of Mathematics Textbooks of North Korea, South Korea, China, and Japan (분수 나눗셈 알고리즘 도입 방법 연구: 남북한, 중국, 일본의 초등학교 수학 교과서의 내용 비교를 중심으로)

  • Yim, Jae-Hoon;Kim, Soo-Mi;Park, Kyo-Sik
    • School Mathematics
    • /
    • v.7 no.2
    • /
    • pp.103-121
    • /
    • 2005
  • This article compares and analyzes mathematics textbooks of North Korea, South Korea, China and Japan and draws meaningful ways for introducing the division algorithm of fractions. The analysis is based on the five contexts: 'measurement division', 'determination of a unit rate', 'reduction of the quantities in the same measure', 'division as the inverse of multiplication or Cartesian product', 'analogy with multiplication algorithm of fractions'. The main focus of the analysis is what context is used to introduce the algorithm and how much it can appeal to students. This analysis supports that there is a few differences of introducing methods the division algorithm of fractions among those countries and more meaningful way can be considered than ours. It finally suggests that we teach the algorithm in a way which can have students easily see the reason of multiplying the reciprocal of a divisor when they divide with fractions. For this, we need to teach the meaning of a reciprocal of fraction and consider to use the context of determination of a unit rate.

  • PDF

Division of Fractions in the Contexts of the Inverse of a Cartesian Product (카테시안 곱의 역 맥락에서 분수의 나눗셈)

  • Yim, Jae-Hoon
    • School Mathematics
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2007
  • Division of fractions can be categorized as measurement division, partitive or sharing division, the inverse of multiplication, and the inverse of Cartesian product. Division algorithm for fractions has been interpreted with manipulative aids or models mainly in the contexts of measurement division and partitive division. On the contrary, there are few interpretations for the context of the inverse of a Cartesian product. In this paper the significance and the limits of existing interpretations of division of fractions in the context of the inverse of a Cartesian product were discussed. And some new easier interpretations of division algorithm in the context of a Cartesian product are developed. The problem to determine the length of a rectangle where the area and the width of it are known can be solved by various approaches: making the width of a rectangle be equal to one, making the width of a rectangle be equal to some natural number, making the area of a rectangle be equal to 1. These approaches may help students to understand the meaning of division of fractions and the meaning of the inverse of the divisor. These approaches make the inverse of a Cartesian product have many merits as an introductory context of division algorithm for fractions.

  • PDF

The Integer Number Divider Using Improved Reciprocal Algorithm (개선된 역수 알고리즘을 사용한 정수 나눗셈기)

  • Song, Hong-Bok;Park, Chang-Soo;Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1218-1226
    • /
    • 2008
  • With the development of semiconductor integrated technology and with the increasing use of multimedia functions in computer, more functions have been implemented as hardware. Nowadays, most microprocessors beyond 32 bits generally implement an integer multiplier as hardware. However, as for a divider, only specific microprocessor implements traditional SRT algorithm as hardware due to complexity of implementation and slow speed. This paper suggested an algorithm that uses a multiplier, 'w bit $\times$ w bit = 2w bit', to process $\frac{N}{D}$ integer division. That is, the reciprocal number D is first calculated, and then multiply dividend N to process integer division. In this paper, when the divisor D is '$D=0.d{\times}2^L$, 0.5 < 0.d < 1.0', approximate value of ' $\frac{1}{D}$', '$1.g{\times}2^{-L}$', which satisfies ' $0.d{\times}1.g=1+e$, $e<2^{-w}$', is defined as over reciprocal number and then an algorithm for over reciprocal number is suggested. This algorithm multiplies over reciprocal number '$01.g{\times}2^{-L}$' by dividend N to process $\frac{N}{D}$ integer division. The algorithm suggested in this paper doesn't require additional revision, because it can calculate correct reciprocal number. In addition, this algorithm uses only multiplier, so additional hardware for division is not required to implement microprocessor. Also, it shows faster speed than the conventional SRT algorithm and performs operation by word unit, accordingly it is more suitable to make compiler than the existing division algorithm. In conclusion, results from this study could be used widely for implementation SOC(System on Chip) and etc. which has been restricted to microprocessor and size of the hardware.

A study on the visual integrated model of the fractional division algorithm in the context of the inverse of a Cartesian product (카테시안 곱의 역 맥락에서 살펴본 분수 나눗셈 알고리즘의 시각적 통합모델에 대한 연구)

  • Lee, Kwangho;Park, Jungkyu
    • Education of Primary School Mathematics
    • /
    • v.27 no.1
    • /
    • pp.91-110
    • /
    • 2024
  • The purpose of this study is to explore visual models for deriving the fractional division algorithm, to see how students understand this integrated model, the rectangular partition model, when taught in elementary school classrooms, and how they structure relationships between fractional division situations. The conclusions obtained through this study are as follows. First, in order to remind the reason for multiplying the reciprocal of the divisor or the meaning of the reciprocal, it is necessary to explain the calculation process by interpreting the fraction division formula as the context of a measurement division or the context of the determination of a unit rate. Second, the rectangular partition model can complement the detour or inappropriate parts that appear in the existing model when interpreting the fraction division formula as the context of a measurement division, and can be said to be an appropriate model for deriving the standard algorithm from the problem of the context of the inverse of a Cartesian product. Third, in the context the inverse of a Cartesian product, the rectangular partition model can naturally reveal the calculation process in the context of a measurement division and the context of the determination of a unit rate, and can show why one division formula can have two interpretations, so it can be used as an integrated model.

An Analysis on Processes of Justifying the Standard Fraction Division Algorithms in Korean Elementary Mathematics Textbooks (우리나라 초등학교 수학 교과서에서의 분수 나눗셈 알고리즘 정당화 과정 분석)

  • Park, Kyo Sik
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.105-122
    • /
    • 2014
  • In this paper, fraction division algorithms in Korean elementary mathematics textbooks are analyzed as a part of the groundwork to improve teaching methods for fraction division algorithms. There are seemingly six fraction division algorithms in ${\ll}Math\;5-2{\gg}$, ${\ll}Math\;6-1{\gg}$ textbooks according to the 2006 curriculum. Four of them are standard algorithms which show the multiplication by the reciprocal of the divisors modally. Two non-standard algorithms are independent algorithms, and they have weakness in that the integration to the algorithms 8 is not easy. There is a need to reconsider the introduction of the algorithm 4 in that it is difficult to think algorithm 4 is more efficient than algorithm 3. Because (natural number)${\div}$(natural number)=(natural number)${\times}$(the reciprocal of a natural number) is dealt with in algorithm 2, it can be considered to change algorithm 7 to algorithm 2 alike. In textbooks, by converting fraction division expressions into fraction multiplication expressions through indirect methods, the principles of calculation which guarantee the algorithms are explained. Method of using the transitivity, method of using the models such as number bars or rectangles, method of using the equivalence are those. Direct conversion from fraction division expression to fraction multiplication expression by handling the expression is possible, too, but this is beyond the scope of the curriculum. In textbook, when dealing with (natural number)${\div}$(proper fraction) and converting natural numbers to improper fractions, converting natural numbers to proper fractions is used, but it has been never treated officially.

  • PDF

Double Precision Integer Divider Using Multiplier (곱셈기를 사용한 배정도 정수 나눗셈기)

  • Song, Hong-Bok;Cho, Gyeong-Yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.3
    • /
    • pp.637-647
    • /
    • 2010
  • This paper suggested an algorithm that uses a multiplier, 'w bit $\times$ w bit = 2w bit', to process $\frac{N}{D}$ integer division of 2w bit integer N and w bit integer D. An algorithm suggested of the research, when the divisor D is '$D=0.d{\times}2^L$, 0.5 < 0.d < 1.0', approximate value of $\frac{1}{D}$, '$1.g{\times}2^{-L}$', which satisfies '$0.d{\times}1.g=1+e$, e < $2^{-w}$', is defined as over reciprocal number and the dividend N is segmented in small word more than 'w-3' bit, and partial quotient is calculated by multiplying over reciprocal number in each segmented word, and quotient of double precision integer division is evaluated with sum of partial quotient. The algorithm suggested in this paper doesn't require additional correction, because it can calculate correct reciprocal number. In addition, this algorithm uses only multiplier, so additional hardware for division is not required to implement microprocessor. Also, it shows faster speed than the conventional SRT algorithm. In conclusion, results from this study could be used widely for implementation SOC(System on Chip) and etc. which has been restricted to microprocessor and size of the hardware.