• Title/Summary/Keyword: 정적-외연적방법

Search Result 10, Processing Time 0.027 seconds

Development of Static-explicit rigid-plastic finite Element Method and Investigate the offset of strain increment in Osakada method (정적-외연적 강소성 유한요소법의 개발 및 Osakada방법에서 변형율 증분에 따른 영향분석)

  • 정동원;이승훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.116-121
    • /
    • 2004
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, static-explicit rigid-plastic finite element method will be introduced. This method is the way that restrict the convergence interval. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

금속 성형 공정의 준정적 변형 예측을 위한 외연적 시간 적분 유한 요소법의 적용성 연구

  • 유요한;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.192-197
    • /
    • 1995
  • 소재의 손실을 최소한 줄이면서 원하는 형상의 제품을 가공하는 가장 기본적인 금속 가공 방법은 금형을 이용하는 금속 성형(metal forming)이다. 본 논문에서는 준정적 금속 성형 문제 해석 에대한 외연적 시간 적분 유한 요소법의 적용성을 평가 하기 위하여 변형모드가 복잡한 박판튜브 (thin-walled tube)의 좌굴문제를 해석하여 변형과정이 이론 및 실험결과와 비교적 잘 일치하는지 살펴보기로 한다. 또한 준정적 금속 성형 문제 해석에 외연적 시간 적분 유한 요소법을 사용할 때 계산 시간을 줄이기 위하여 많이 사용되는 가압속도 조절법(loading velocity control technique) 의 타당성을 평가하기 위하여 박판 튜브와 중실 실린더(solid cylinder)의 변형 속도에 따른 변형 모드의 변화를 비교 관찰하여 기하학적 형상에따른 가압속도 조절법의 적용 가능 여부를 분석하여 보겠다.

  • PDF

Development of Static-explicit rigid-plastic finite Element Method and investigate the effect of punch stroke and the strain increment in Osakada method (정적-외연적 강소성 유한요소법의 개발 및 펀치 행정구간에 따른 영향과 Osakada 방법의 초기 변형율 증분에 따른 영향분석)

  • 정동원;이승훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1545-1548
    • /
    • 2003
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study. static-explicit rigid-plastic finite element method will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. Also, we investigated the effect of punch stroke and the strain increment this method. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Development of 2-Dimensional Static-explicit Rigid-plastic Finite Element Method and Investigation of the Effect of Punch Stroke (2차원 정적-외연적 강소성 유한요소법의 개발 및 펀치 행정구간에 따른 영향분석)

  • Jung, Dong-Won;Lee, Seung-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.39-45
    • /
    • 2004
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, static-explicit rigid-plastic finite element method will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

The Development of Static-explicit Rigid-plastic Finite Element Method and Application to 2-dimension Sectional Analysis (2차원 단면해석을 위한 정적-외연적 강소성 유한요소법의 개발 및 적용)

  • Jung, Dong-Won;Lee, Seung-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • In rigid-plastic finite element method, there is a heavy computation time and convergence problem. In this study, revised rigid-plastic finite element method Will be introduced. This method is the way that restrict the convergence interval. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis method were no longer a critical problem. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

The Analysis of Draw-bead Process by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드공정해석)

  • Jung, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.604-609
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

The Influence of the Number of Drawbead on Blank Forming Analysis (블랭크 성형해석시 드로우비드 개수가 미치는 영향에 관한 연구)

  • 정동원;이상제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.193-200
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the influence of the number of drawbead during the blank forming process will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. It is expected that this static-explicit finite element method could overcome heavy computation time and convergence problem due to the increase of drawbeads.

  • PDF

The Analysis of Draw-bead Process According to the Effect of the Drawbead Shape by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 드로우비드 형상에 따른 비드공정 해석)

  • 정동원
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.275-281
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critial Problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

A Study on the Influence of the Punch Stroke of Bead on the Draw-bead process by using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드 펀치 행정거리가 드로우비드 공정에 미치는 영향에 관한 연구)

  • 정동원
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 2001
  • The bead is used to provide properly restraining force in the sheet metal forming process. This bead process includes bending and geometrical non-linearity, and affects the state of binderwrap. Therefore, the analysis of bead process is very important to obtain the desired formability. In this paper, the research about the influence of the punch stroke of bead on the draw-bead process was conducted. Results from the analysis will give useful information to the effective tool design of blank forming process. To analyze the bead process, and elasto-plastic finite element formulation is constructed from the equilibrium equation and the considered boundary conditions involved a proper contact condition. The static-explicit finite element method as a numerical method for the analysis was applied to the analysis program code. It was found that this method could solve too much computation time and convergence problem owing to high non-linearity of bead forming process.

  • PDF

The Effect of the Drawbead Shape on the Sheet Metal Forming Process (드로우비드 형상에 따른 박판 성형공정에 미치는 영향에 관한 연구)

  • Jeong, Dong-Won;Lee, Sang-Je
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1624-1632
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defe cts such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the effect of the drawbead shape will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.