• Title/Summary/Keyword: 정적 전단하중

Search Result 143, Processing Time 0.023 seconds

Racking Property of Light-framed Shear Wall with Hold-down Connector (홀드다운을 적용한 경골목조 벽체의 전단성능)

  • Lee, In-Chan;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.26-36
    • /
    • 2008
  • As the height of the light-framed building increases, the lateral load and overturn-moment are increased and the possibility of the building overturn becomes larger. Because the shear wall resists lateral load in light-framed building, the reinforcement of shear wall is required. In order to reinforce the light-framed shear wall, using lag screw fastener type (B-HD) and using bolt type (S-HD) hold-down connectors were applied for test. And domestic larch lumbers, $38{\times}140mm$ and $89{\times}140mm$, KS 2nd grade, were used for the stud. The North American OSB panels were used for sheathing panel. Static loads, load speed 6 mm/min, were applied on top of the wall. As a result, shear strength of the wall that using hold-down connector was improved sufficiently. And when applying the S-HD type hold-down connector, stud should be reinforced against weakening by drilled hole. As increasing the number of lag screw, the number of bolt and the product allowable strength, the strength of shear wall that using hold-down connector was also increased. When applying hold-down connector to light-framed building using 38 mm stud, it must be reinforced by enlarging the thickness of stud like as 38 mm doubled column.

Dynamic Shear Strength of Stirrup-reinforced Cast-in Anchors by Seismic Qualification Tests (스터럽 보강 선설치 앵커의 지진모의실험에 의한 동적 전단 저항강도 평가)

  • Kim, Tae Hyung;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • An experimental study was conducted to evaluate the breakout strength of stirrup-reinforced cast-in anchors under dynamic shear loadings. The shear loadings were applied in the manner specified in the ACI 355.2 and ETAG 001 for the seismic qualification tests. Test specimens were fabricated with M36 anchor (edge distance, 180mm) reinforced with D10 stirrups (spacing, 100mm). The specimens reached almost the breakout strength and thereafter fracture of anchor occurred. Additional tests with M42 anchor (edge distance, 160mm) reinforced with D6 bars (spacing, 100mm) were also conducted. The experimental results showed that the dynamic shear strength was not less than the static resistance. Based on the test results, it was shown that ACI 318 and ETAG 001 specifications estimate the breakout strength of stirrup-reinforced anchors conservatively as more reinforcement is provided.

Nonlinear Random Vibration of Laminated Composite Plates by Comparison of Classical Theory, 1st and 3rd Order Shear Theories (복합적층판의 비선형 불규칙 진동 해석에 관한 고전 이론, 1차 및 3차 전단 이론의 비교 연구)

  • Kang, Joowon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.129-138
    • /
    • 2000
  • Composites are finding increasing use in a wide variety of engineering applications due to their outstanding mechanical properties. A number of studies have focused on the development of new materials as well as the response of composite structures to static and dynamic loads by assuming the external driving forces to be deterministic. However, there ate many situations in practice where the exciting forces vary randomly. In this work, the nonlinear response of laminated composite plates excited by stochastic loading is studied by the finite element method. Classical, first-order and third-order shear theories for plates are used in the finite element formulation. Since most composites exhibit significant nonlinearity in the shear stress-strain law, this is included in the present analysis.

  • PDF

Nonlinear Analytical Model of Unreinforced Masonry Wall using Fiber and Shear Spring Elements (파이버 및 전단 스프링요소를 이용한 비보강 조적벽체의 비선형 해석모델)

  • Hong, Jeong-Mo;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.283-291
    • /
    • 2018
  • This study intends to develop an analytical model of unreinforced masonry(URM) walls for the nonlinear static analysis which has been generally used to evaluate the seismic performance of a building employing URM walls as seismic force-resisting members. The developed model consists of fiber elements used to capture the flexural behavior of an URM wall and a shear spring element implemented to predict its shear response. This paper first explains the configuration of the proposed model and describes how to determine the modeling parameters of fiber and shear spring elements based on the stress-strain curves obtained from existing experimental results of masonry prisms. The proposed model is then verified throughout the comparison of its nonlinear static analysis results with the experimental results of URM walls carried out by other researchers. The proposed model well captures the maximum strength, the initial stiffness, and their resulting load - displacement curves of the URM walls with reasonable resolution. Also, it is demonstrated that the analysis model is capable of predicting the failure modes of the URM walls.

Cyclic Shear Strength of Anisotropically Consolidated Snnd (비등방 압밀 모래의 반복 전단강도)

  • Kim, Byung-Tak;Kim, Young-Su;Seo, In-Shik;Jeong, Dong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.73-85
    • /
    • 2002
  • This paper is focused on studying the undrained cyclic triaxial behavior of saturated Nak-dong River sand, using anisotropically consolidated specimens. A test of isotropically consolidated specimens was performed to compare the results of the anisotropically consolidated specimens. The cyclic shear stre3ngth of the sand under various combinations of initial static shear stress and relative density was considered. Failure was defined as a 5% double amplitude cyclic strain and a 5% residual axial strain for both reversal stress and no reversal stress conditions. Using this definition, the cyclic strength of the anisotropically consolidated specimens was affected by the initial static shear stress. For anisotropically consolidated Nak-dong River dense sand, the cyclic strength is greater than that of Toyolura silica sand but is smaller than that of Dogs Bay carbonate sand. By comparing the experimental and predictecl results, it was possible to predict the residual pore pressure of Nak-dong River sand using Hyodo's model with initial static shear stress subjected cyclic loading.

Shear-Fatigue Behavior of High-Strength Reinforced Concrete Beams under Repeated Loading (반복하중을 받는 고강도 철근콘크리트 보의 전단피로 거동)

  • 곽계환
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.92-103
    • /
    • 1999
  • Recently structural damage has been frequently observed in reinforced concrete brdiges due to repeated loads such as vehicular traffic an due to continual overloads by heavy duty trucks. Therefore, the purpose of this experimental stduy is to investigate the damage mechanism due to fatigue behavior of high-strength reinforced concrete beams under repeated loads. From the test results, the relation of cycle loading to deflection is on the mid-span , the crack growth and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results , high-strength reinforced concrete beams failed to 57 ∼66 percent of the static ultimate strength . Fatigue strength aobut two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

  • PDF

Fatigue Behavior of Large Stud Shear Connectors (대직경 스터드 전단연결재의 피로거동)

  • Shim, Chang Su;Lee, Pil Goo;Kim, Hyun Ho;Yoon, Tae Yang
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.621-628
    • /
    • 2003
  • Stud shear connectors are the most commonly used shear connectors: up to 22mm studs are usually used in steel-concrete composite structures. To expand the current design codes for stud connectors, large studs with a diameter of more than 25mm should be investigated. Through push-out tests on large stud shear connectors that transcend the limitation of current design codes, fatigue behavior was investigated and comparisons with design equations performed. The shear stiffness of the connectors in elastic range was evaluated through shear tests on 25mm, 27mm, and 30mm studs and compared with those from static tests. The fatigue behavior of large studs was discussed in terms of residual slip and load-slip curves. The initiation of fatigue cracks in the welding part could be detected through the history of displacement range. Test results showed that the design fatigue endurance of S-N curves in current design codes could be applied to large stud shear connector.

The Composite Behaviors of Fabricated Concrete Deck Simple Bridges (바닥판조립식 단순보교량의 합성거동에 관한 연구)

  • 구민세;장성수;윤우현
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.525-535
    • /
    • 1999
  • In this study, a new method of fabricated concrete deck bridge construction is proposed. This paper details the method in which concrete multi-girders and fabricated concrete decks are rested on the upper flange of the girder and the female to female type sheat-key is formed to connect girder and deck. The finite element analysis is performed to verify the accuracy of the structural behaviors of the fabricated concrete deck bridge by comparing with experimental results. The first task performed is the analysis of the equilibrium of the member force occurring between the deck and the girder. After verifying equilibrium of the member force determined by the finite element analysis, this process is applied to the analysis of maximum member force as the position of design load. This task is utilized to determine the safety of each member according to the same scale finite element model. The final process in this study is to compare the deflection of girders used in experiment with that of the same scale finite element model to verify the strength of fabricated cincrete deck bridge. By this comparison, it is shown that the behavior of the fabricated concrete deck bridge is almost same as the finite element analysis. The second task is to analyze the load distribution effect according to the number of diaphragms and the composite effect due to the cinnection of the deck and girder by the finite element analysis. From the results of second task, it is found that the load distribution effect is not related to the number of diaphragms in case of the central loading, but is related to the number of diaphragms for eccentric loading. Analysis of the load distribution indicates that the effective number of diaphragm is three. It is also shown that the maximum deflection is decreased to almost one half due to the composite action of the deck and girder.

  • PDF

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Static Test and Suggestion of Shear Strength Equation on Shear Studs in Composite Bridge (합성형 교량에서 전단연결재에 대한 정적실험 및 강도식의 제안)

  • Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.43-50
    • /
    • 2018
  • In this study, to investigate the shear connection material for the composite of steel plate and bottom plate, design standards and research cases for shear connectors in various countries around the world were analyzed and shear tests were performed on the Push-out specimens with a shear connection, which transmits the horizontal shear force developed on the contact surface between the steel plate and the concrete slab due to various vertical loads acting on the bridge deck. Through Push-out tests of shear studs, of which FRP bar instead reinforcement is placed, the shear stud evaluation formula of the steel strap bottom plate was suggested. The suggested equation suggested in this study has the safety factor of approximately three times compared to allowable strength of highway bridge design criteria. In addition, compared to existing DIN standards and Viest assessment equation, the results showed similar values(approximately, 5% error).