Nonlinear Random Vibration of Laminated Composite Plates by
Comparison of Classical Theory, 1st and 3rd Order Shear Theories
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Abstract

Composites are finding increasing use in a wide variety of engineering applications due to their
outstanding mechanical properties. A number of studies have focused on the development of new
materials as well as the response of composite structures to static and dynamic loads by assuming the
external driving forces to be deterministic. However, there are many situations in practice where the
exciting forces vary randomly. In this work, the nonlinear response of laminated composite plates
excited by stochastic loading is studied by the finite element method. Classical, first-order and
third-order shear theories for plates are used in the finite element formulation. Since most composites
exhibit significant nonlinearity in the shear stress-strain law, this is included in the present analysis.

Keywords @ random vibration, laminated composite plates, material nonlinearity

1. Introduction in aeronautical, mechanical and other indus-
tries over the past 20 years. Composites have

Composites have been developed and used outstanding mechanical properties, such as
for a great variety of engineering applications high strength to weight ratio, excellent corro-
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sion resistance, very good fatigue characteris-
tics, etc, and are being increasingly used in civil
engineering application. The behavior of com-
posite structures is significantly different from
those made of conventional materials because
of their anisotropic properties, which are de-
pendent on fiber orientations. Another no-
ticeable feature is nonlinear behavior when
shear loading is involved.

In this paper. the stochastic dynamic re-
sponse of laminated composite plates is studied.
Classical plate theory, which neglects trans-
verse shear deformation, has been widely used
to model laminated composite plates, but is
adequate only for very thin plates. Many plate
theories have been proposed to include the
effect of shear deformation for the thick plates,
of which, the laminated version of the first-order
shear deformation theory is the simplest. This
theory assumes a linear distribution of the in-
plane normal and shear stresses over the thic-
kness which results in nonzero transverse shear
stresses, but does not produce the nonlinear
transverse shear stress distribution through the
plate’s thickness. Third-order shear deformation
theories can overcome the limitations of the first-
order theory by introducing additional degrees-
of-freedom (DOF). The third order theory can
account for not only transverse shear effects
but also produce a parabolic variation of the
transverse shear stress through the thickness
of the plate.

In this work, random vibration analysis of
laminated composite plates exhibiting material
nonlinearity by finite element method is per-
formed, and results obtained using classical
theory, first-order, and third-order shear the-
ories are compared.

2. Nonlinear Constitutive Equations

Based on experimental resultsl), it is well
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known that a unidirectional lamina displays
essentially linear behavior when the direction
of loading is parallel to or perpendicular to
the fiber direction. However, when loaded in
shear, the behavior is significantly nonlinear.
Several nonlinear constitutive models have been
proposed, of which the Hahn and Tsai model”
is simple and easily implemented into a finite
element formulation. In this work the proposed
model can be expressed as:

{e}=[SHe?}
+ [0 0 Shz Sk Suri]” (1)

in which {e}=1[e ey 747 7] and {o'} =
[0, 0y 74 75 75 ] are the strain and stress vectors

in material coordinates, (S) is the compliance
matrix, and the last term on the right-hand
side of eq. (1) represents shear nonlinearities.
By inverting and rearranging eq. (1), the
shear stress-strain law becomes

{o}=[Qle"}
+ [ diag (0, 0, f4(74), fs(?’s), fs(}’s))]
-{e’} (2)

where [ diag (0, 0, f,(ry, f5(75), fe(7)] is the

diagonal matrix, and [Q] = [S]™!. For egs.
(1) and (2) to be exact inverse relations, the
functions f,(7,), ¢=4,5,6. are the solutions
of cubic equations, and contain terms involving
fractional powers of 7y,. In order to simplify

the problem, it is assumed that the functions
f,(r,) may be approximated using the least

square method by

f.(r) = an it aprt+ ...+ am?"

= Z‘aqmgi, a=4,5,6 (3)



By suitable choice of the parameters «,, the
stress—strain law can be made to approximate
eq. (1) for a reasonable range of shear strains.
Fig. 1 shows the in-plane shear stress-strain
law given by eq. (1) for Boron/Epoxy Narmco
5505, and an approximate fit using eq. (3)

with n=2. The material parameters used were:

Se = 1.81 X10"%m%/N, Sg =4.67 x 102 m*/N°,

ag = -1.558X% 10"®Pa, and ag = 2.4171x 10"°Pa.
The stress-strain law in terms of the global
coordinate system may be written as

{o}=[QUet+1[T1"
- [ diag (0, 0, fi(yy), f5(rs), fe(7e))]
[ T1 " {e} (4)

where {0} = [0, 0, 7y, Tn T1”, {e}=e,
€y Tozr Yorr Y] L [ QY=[TI7'[Q]-[T17, and

[T] is a rotational transformation matrix.
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Fig. 1 Fit of approximate shear stress-strain law

3. Plate Theories

3.1 Classical Laminated Plate Theory(CLPT)

The CLPT is based on the extension of
classical plate theory to laminated plates.
Classical plate theory is based on Kirchhoff's
hypothesis. Therefore the effect of shear defor-
mation is neglected. Their displacements u,
v, and w can be expressed as

w(x,v,2) = wuy(x,y) — z%—z‘c’
v(x,v,2) = vy(x, ) —z%—’}‘j (5)

w(x,y,2) = wy(x,y)

in which v and v are in-plane displace-
ments in the x and v directions respectively:
w is the out-of-plane displacement in the z
direction: up, vo, and wp are displacements

on the midplane at z=0; an —%—;U and

- %—7;: are rotational angles about the y and

x directions, respectively.

3.2 First-order Shear Deformation Theory
(FSDT)

A more refined plate theory that produces
better results for thick plates is the FSDT.
The FSDT yields a constant value of trans-
verse shear strain through the thickness of the
plate, which is an approximation. The FSDT
is based on the displacement field:

u(x,9,2) = wup(x,» +2¢,(x,9)
v(x, 3,2 = uylx,y) + z2¢,(x, ) (6)
w(x,y,2) = wy(x,»

where the additional degrees-of-freedom

(DOFs) ¢, and ¢, are the rotations of the trans-

verse normals about the y and x axes, respec-
tively.
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3.3 Third-order Shear Deformation Theory
(TSDT)

While the FSDT produces acceptable re-
sults for thick plates made of traditional
materials, it is not sufficiently accurate for
thick composite laminated plates. The TSDT
has been developed to improve accuracyZ). In
this study, a four-noded isoparametric element
with seven DOFs at each node is used to-
gether with the assumed displacement field
whose field indicates a cubic variation of the
in-plane displacements and a parabolic distri-
bution of the transverse shear strains through
the thickness of the plate. It satisfies the
stress free condition at the top and bottom
surface of the plate. The assumed displacement
field is

ulx,y,2) = uplx, )
o4

>IN
—
—

-

=

+
=B8]
SN
—_—
=

v(x,y,2) = vp(x,9) , (N
+2[0-4(5) (44 5)]

wlx,y,2) = wyx,y)

4. Finite Element Formulation

A four-noded rectangular plate element is
used with 5 DOFs for the CLPT and 7 DOFs
for FSDT and TSDT. In-plane displacements
u and v are interpolated using bilinear iso-
parametric functions and the out-of-plane dis-
placement w is interpolated using the non-
conforming cubic functions”. For FSDT and
TSDT, the shear rotations ¢,and ¢, are inter-

polated using bilinear isoparametric functions.

4.1 Elemental Stiffness Equation

Using a strain energy approach, the ele-
mental stiffness equations can be obtained as
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{P.}=1KJ]{u} + {4} (8)

where [K,] = linear stiffness matrix, and

wi= [ [T in

- [T1"T[B] (9)
- Au 1J) dedndz

is a nonlinear load vector arising from material
nonlinearity. In eq. (9), (B) is the strain-
displacement matrix in the finite element
formulation, z, is the distance from the ref-
erence plane to the bottom of the kth lamina,
17| is the determinant of the Jacobian matrix
for transformation from the global to the nat-
ural coordinate system and [ f] = [diag(0, 0,
Ay, f(rs), f:(7)). Substituting eq. (3), eq.

(9) can be written as

= 5 L0 T+ 8+ (9]
Aut || dednda

(10)

where {¢,} = Z‘laq,-yi" [BI"[T,] [B] and
[ T, =0T 1} diag(0, 0, 84, 85, 0N - L TV T
for g = 4, 5, 6 and 9§, is the Kronecker delta.

4.2 Dynamic Equation of Motion

For dynamic problems, the elemental mass
and damping matrices are required. Like the
stiffness matrix, the consistent mass matrix
can also be obtained by assembling the ele-
ment mass matrices defined by

(M1 = [ o[NIT[N]QV

- e LT

| J| dedndz (11)



where p, is the mass density of the kth
lamina and (N] contains interpolation func-
tions. The damping matrix is usually specified
indirectly through modal damping ratios. The
dynamic equations of motion of a laminated
plate discretized into finite elements is estab-
lished as

(M} +[ CHu}+ [ KHu}+{g}={P}  (12)

where (M) and (K] are consistent mass and
stiffness matrices obtained by assembling the
element matrices, () is the damping matrix,
{¢} is a vector of nonlinear terms obtained
by assembling the element vectors { ¢.}. and

{P} is the external force vector.

5. Equivalent Linearization

Since exact solutions of nonlinear random
vibration problems are often impossible to
obtain, several approximate techniques have
been developed. A method that can be used
with complex finite element structural models
is the method of equivalent linearization”. In
this method, the nonlinear equation of motion
given by eq. (12) is replaced by an equivalent

linear one
(M{B1+[ CH )+ A KI+[ K ] u) = (P} (13)

where [ K'] is the equivalent stiffness matrix
related to {¢}. [ K*] is determined by mini-
mizing the magnitude of the difference vector
{e} = {¢}—[ K'l{«} between the actual system
of equation and the equivalent linear system.
Assuming that {P} and {u} are zero-mean
Gaussian random vectors, it can be shown
that the equivalent stiffness matrix, [K'] is
related to the nonlinear vector {¢} through

o
N
]

(K] = E[ e (14)

The matrix [ K'] may be assembled through
equivalent element stiffness matrices given
by

(5] = E[ 5]

BEELLLmTm
‘ [B]E[a—{‘le—} ﬁ‘{ue}]lﬂ dédydz
(15)

Substituting 7, = [ T,-11 [ Bl [ «.] from the

strain-displacement relations, where [7,]

is the (q-1)th row of [ 7] 7, the expectation
in eq. (15) becomes

(16)

where

jl—lﬁlh lﬁ o= lkz—l

(E[ue,kl Uy oo« ue,kz,] (17)

. { m]i T(rl)/m}{ mf__ilB in k“])

and the pth element of [8,] is

leﬁllzlﬁ .1211’?211

(E [uE,ﬂ Ue by Ue by + - - ue,kz,,l] (18)

e (LB

6. Random Vibration Analysis

Random vibration analysis to solve eq. (13)
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is performed using an iterative approach with
each iteration consisting of a linear analysis.
The matrix in any given iteration is computed
using the nodal displacement covariances from
the previous iteration and the iterations are
terminated when the covariances converge. The
main steps in a frequency domain approach
are as follows:

Step 1. Using the mass matrix [M] and
the stiffness matrix [K}+[K'], where [K"]
=0 in the very first iteration, determine un-
damped natural frequencies, w;, and mode
shape matrices, {¢;}, for a chosen number of
modes.

Step 2, Perform a linear random vibration
analysis to determine the covariances of the
nodal displacement. If the excitation P is
taken to be a stationary random process, the
covariances of the stationary response may
be computed through

rtu- S5 4
) Z{ ,,,Z:l f_me/(— w) H w)

* Splw) do (19)

where ¢,; are rjth elements of the mode shape
matrix, M; = {¢;}TIM1{¢;} is the jth modal
mass. H;(w) is the modal frequency response
function for mode j given by

1 (20)

(1)? ~a)2+2i C,-cujw

H,‘(CU) =

in which ; and §&; are the undamped nat-
ural frequency and damping ratio of mode J,
respectively. H;(—w) is the complex conjugate
of H;(w). S;,(w) is the cross spectral density
function of the nodal force excitations P, and
P,, at the Ith and mth DOF.
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Step 3. Compute the equivalent element
stiffness matrices and assemble the global
equivalent stiffness matrix.

The three steps outlined above are repeated
until convergence is obtained in the covari-
ances of nodal displacements. It is convenient
to check for convergence by using the nodal
displacement variances and the mth iteration
is assumed to have converged if

\/Z (G w,m— O u,‘m—l)2
V2 (o)

< tolerance (21)

where u; =V E[«4].

7. Numerical Examples

A cantilevered laminated plate having a
three-ply configuration and rectangular geom-
etry is considered. The plate is 1m long, 0.5m
wide, and 0.1m thick, yielding a length to
thickness ratio of L/h = 10. The thickness
was chosen to be sufficiently large so that
shear deformations could be significant and
in reality each lamina would be composed of
several sublayers. A symmetric ply arrangement
with fiber orientations of «¢°, 0 and e in
the three plies is examined. Two values of
30 “and 60" are used for comparative pur-
poses. Each layer within the plate is modeled
with nine finite elements of equal size as
shown in Fig. 2.

The four nodes at the free end of the can-
tilever are loaded with identical loads in the
z-direction, with P being a zero-mean white
noise excitation. The level of the excitation
spectrum was increased from 10,000 N’s to
100,000 N% and the root-mean-square (RMS)
responses were computed. The composite mate—
rial is taken to be Boron/Epoxy Narmco 5505.



Fig 2 Three-ply symmeiric laminated plate
loaded in flexure

The assumed material properties were taken
to be E11 = 205 GPa, Ez2 = 19 GPa, Gi2 = Gi3
=6 GPa, and Gz3 =4 GPa. The fifth order
approximation shown in Fig 1 was used to
approximate the nonlinear shear stress strain
relations with a, =-1.558 x 10Pa and ag

=92.417 X 10"°Pa. The assumed mass density
was 2000kg/m®. Results obtained using CLPT
and FSDT are compared to those obtained
using TSDT.

Table 1 shows the first five undamped
natural frequencies of the plate from the last
iteration of the analysis at the excitation
level S, = 100,000 N*s for TSDT, FSDT, and
CLPT. The natural frequencies obtained by
the CLPT are larger than those resulting from
the FSDT, which in turn are larger than those
resulting from TSDT. The differences between
CLPT and TSDT are as high as 32% for some
frequencies. The difference.in natural frequen-
cies between the FSDT and TSDT are within
10%. Inclusion of shear deformation through
progressively higher order theories therefore
yields more flexible models.

The variations of the normalized RMS z-
displacement at the free right corner node of
the plate with the excitation load level as
predicted by the different theories are shown

Table 1 Natural frequencies predicted by
the three theories for the excitation

intensity Sy = 100,000 N?-sec

(3° /0 / 30 )il 600 /O / 60" )
TSDT | FSDT | CLPT { TSDT | FSDT | CLPT
(Hz) (Hz) | (Hz) (Hz) (Hz) (Hz)
1 84.97 | 84.66 | 88.02 | 59.63 | 59.15 | 60.09

Mode

2 331.66 | 335.56 | 376.79 | 260.47 | 273.64 | 299.20

3 490.56 | 493.75 | 493.85 | 381.26 | 358.52 | 377.06

4 | 493.95 | 548.36 | 654.29 | 440.02 | 441.84 | 441.92

5 934.98 1 939.84 |1106.18| 840.25 | 872.58 | 993.46
in Fig. 3.

The normalization has been performed by
dividing each response by the nonlinear re-
sponse resulting from the TSDT at the same
load level. The figure indicates that the dis-
placement from the CLPT is less than that
from the TSDT. At any given load level the
displacements increase with the order of the
theory, i.e., CLPT>FSDT—-TSDT.

The variation of the normalized RMS normal
stresses iof element 2 of the plate with the
excitation level as predicted by the different
theories are shown in Figs. 4 and 5. The
behavior of the stresses is opposite to that of
the displace- ments with the normal stresses
resulting from CLPT and FSDT being larger
than those resulting from the TSDT.

The variation of the normalized RMS shear
stresses in material directions from the dif-
ferent theories at the center of element 2 of
the plate with the excitation level are shown
in Figs. 6, 7, and 8.

Fig. 6 indicates that the normalized in-plane
shear stresses for 30 ° for the FSDT and CLPT
are larger than that for the TSDT, while for 60 °
the reverse is true. Fig. 7 and 8 show that the
transverse shear stresses predicted by the FSDT
are significantly lower than those predicted

srRAAR AR s =2E X133 M1E(2000.03) 135
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by the TSDT. This is because the FSDT yields
constant transverse shear stresses having ap-
proximately average values. Again it is appar-
ent that the constant stresses in each layer
predicted by FSDT are significantly smaller than
the maximum value predicted by the TSDT.

8. Conclusions

A random vibration analysis technique for
laminated composite plates modeled with finite
elements and including material nonlinearity
is presented. Since the shear stress-strain
response of a lamina is clearly nonlinear, this
feature is considered in the analysis. For
expediency, an approximate nonlinear shear
stress-strain law expressed in terms of a fifth-
order polynomial is used to approximate the
nonlinear shear stress—strain law. Since trans-
verse shear deformation is important for even
moderately thick composite plates, the TSDT
which has cubic displacement fields is used.
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Fig. 8 Variation of normalized RMS 1y
with excitation level

The numerical example presented indicates that
the effect of nonlinearity on the responses
becomes more pronounced as the excitation
level is increased. This study indicates that the
nonlinear shear stress—strain law produces sig-
nificant nonlinearity in some displacement
and stress responses depending on the fiber
orientations.

The RMS responses obtained from the CLPT
and the FSDT are compared with those ob-
tained from the TSDT. The structural model
becomes progressively more flexible as progres—
sively higher-order shear theories are used. Of
the three theories considered, the TSDT yields
the largest displacements while the CLPT
yields the smallest displacements.

Transverse shear stresses predicted by the
FSDT are significantly smaller than those pre-
dicted by the TSDT.

The versatility of the nonlinear random vi-
bration method developed is that it can be
applied to laminated composite plates with
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complex geometries and excitations with vary-
ing degrees of elastic nonlinearity in the shear
stress-strain law.
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