• 제목/요약/키워드: 정적 연소

검색결과 163건 처리시간 0.021초

저온 바이오디젤 연료의 연소특성에 관한 실험적 연구 (An Experimental Study on Combustion Characteristics when applied Bio-Diesel Fuel at Low Temperature)

  • 이성욱;이정섭;박영준;김득상;이영철;조용석
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.206-211
    • /
    • 2008
  • In this research, combustion and spray characteristics were investigated experimentally in a constant volume chamber by applying bio-diesel fuel to a common-rail system in which precise control is available for utilizing environmentally friendly properties of bio-diesel fuel. The experiment was conducted at fuel temperatures $20^{\circ}C$ and $-20^{\circ}C$ to investigate combustion characteristics of bio-diesel fuel provoking problems in fluidity specially in a low temperature. For the visualization, the experiment was carried out under various conditions of ambient pressure, injection pressure and fuel temperature. The test was made by three different types of diesel fuels, conventional diesel, BD20 and BD100. In summary, this research aims to investigate combustion characteristics in the application of bio-diesel fuels and compare the results with performance of conventional diesel fuel. This experimental data may provide fundamentals of spray and combustion of bio-diesel fuels at a low temperature and contribute to the development of bio-diesel engines in future.

  • PDF

초소형 연소기내 화염전파의 수치모사 (Numerical Simulation of Flame Propagation in a Micro Combustor)

  • 최권형;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.

라디칼인젝터를 적용한 정적연소기의 연소특성에 관한 계산적 연구 (Numerical Study on Combustion Charaterestics in a Constant Volume Combustor Having a Radical Injector)

  • 조상무;전재혁;장인선;정성식;박권하
    • 대한기계학회논문집B
    • /
    • 제27권9호
    • /
    • pp.1309-1316
    • /
    • 2003
  • A premixed-compression-ignition engine has been studied to improve the efficiency and to decrease exhaust emissions. However those systems have some difficulties for controlling combustion process. Radical is an activated chemical species formed by a chemical chain reaction between reactant and product. When the chain reactions occur, the energy bond of species is broken easily by the released radicals. The combustion chamber of the premixed-compression-ingnition engine is consist of a main chamber with lean premixture and a subchamber with rich premixture. Those are connected by narrow cylinderical connections. With ignition start in the subchamber, many different kinds of radical is jetted into the main chamber. The premixed gas in main chamber is quickly burned up by the radical ignition in multi-pionts. In this paper, the combustion phenomena in a constant volume combustor having a radical injector are numerically analyzed. The some constants in the reaction rate equation are adjusted by the experimental results tested in the same geometrical chamber. The code is applied on the two combustors in a wide range of equivalence ratio. The results show that the burning time is much shorter in the combustor having radical injector.

부실식 정적연소실내 층상혼합기의 연소특성(II) (Combustion Characteristics of Stratified Mixture in a Constant Volume Combustion Chamber with Sub-chamber (II))

  • 김봉석;권철홍;류정인
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.122-134
    • /
    • 1995
  • The present study was investigated combustion characteristics of methane-air mixtures at stratified charge in a constant volume combustion chamber. The main results obtained from this study can be summarized as follows. In case of ${\phi}_s=1.0$, total burning times greatly affected rather than initial time of pressure increase and maximum combustion pressure. In case of ${\phi}_t=1.0$, initial time of pressure increase and total burning times were affected considerably in comparison with the case of ${\phi}_s=1.0$. Also, even the very lean mixture which total equivalence ratio is ${\phi}_t=0.69$(${\phi}_s=1.0$, ${\phi}_m=0.65$), by changing configuration of the critical passage-hole and using a stratified mixture, it is possible to decrease substantially the initial time of pressure increase. total burning times and NOx concentration without deteriorating combustion characteristics such as maximum combustion pressure, rate of heat release etc. in comparison with the use of single chamber(in case of ${\phi}=1.0$) only. Specifically, our trends were revealed remarkably in the case of Type D which is reduced a flame contact area of sub-chamber side of the passage-hole.

  • PDF

정적연소실에서 메탄-공기 예혼합화염의 CO, $CO_2$ 및 NOx 배출 특성 (CO, $CO_2$ and NOx Emission Characteristics of Methane-Air Premixed Flame in Constant Volume Combustion Chamber)

  • 김태권;김성훈;장준영
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.19-26
    • /
    • 2000
  • This paper presents the effects of initial pressure of mixture on CO, $CO_2$ and NOx emissions in constant volume combustion chamber. The CO, $CO_2,O_2,N_2$ concentrations in the chamber are determined by thermal conductivity detection (Gas-chromatograph) wile the NOx concentration is measured by chemiluminescent detection (NOx Analyser). Methane-air mixture is used as premixed fuel and the measurements are taken with equivalence ratios($\phi$) varing from 0.6 to 1.3, and initial pressures of methane-air mixture varing from 0.1MPa to 0.8MPa in constant volume combustion chamber. The NOx concentration steadily increases with increasing equivalence ratio, peaks in lean flame ($\phi$=0.85~0.9), and then rapidly decreases. However, as the initial pressure of mixture is increased, the equivalence ratio corresponding to the point of peak [NOx] shifts towards leaner conditions. This is caused by a similar shift in the peak [CH], which is caused by the variation with pressure and equivalence ratio of the rate of CH production from $CH_2$ and OH. The maximum combustion pressure peaks at $\phi$ =1.05 and the $CO_2$ concentration peaks at $\phi$=0.95~1.0 while the CO concentration rises sharply at the condition of fuel-rich mixtures. This is caused by complete combustion at $\phi$=0.95.

  • PDF

대칭형 핀틀 노즐의 핀틀 위치와 고도 변화에 대한 정상상태 특성 연구 (A Study on the Steady-State Characteristics of Symmetric Pintle Nozzle with Varying Position of Pintle and Change in Altitude)

  • 정기연;강동기;정은희;이대연;최재성
    • 한국추진공학회지
    • /
    • 제23권1호
    • /
    • pp.33-45
    • /
    • 2019
  • 본 연구에서는 좌, 우로 배치된 대칭형 핀틀 노즐의 고도 변화와 핀틀 위치 변화에 따른 특성을 파악하기 위해 수치해석을 수행하였다. 핀틀 노즐 형상은 선행연구를 수행한 직선형 핀틀 노즐을 사용하였고, 연소실 경계조건은 추진제 연소특성을 고려하였다. 해석을 수행할 유동해석 프로그램으로 사각노즐, 핀틀 노즐, 고고도 조건의 검증해석을 수행하여 적절한 해석기법을 설정하였다. 핀틀 위치는 full close, half open, full open 의 3가지 서로 다른 노즐 목 크기조건을 설정하였고, 고도는 0, 5, 20 km 조건을 설정하였다. 각 조건별 추력과 핀틀의 구동하중, 정적 안정성을 비교하여 연구를 수행하였다.

구형 탄환을 이용한 감자총의 설계, 해석 및 시험 (Design, Analysis and Experiment of Potato Gun with a Spherical Projectile)

  • 강홍재;김지환;김영식;손소은;최한울;최정열
    • 한국항공우주학회지
    • /
    • 제41권10호
    • /
    • pp.796-804
    • /
    • 2013
  • 연소 및 추진 기관 공학 교육 과정의 일부로써 간단한 형태의 열기관인 감자총 (Potato Gun)의 제작, 시험 및 해석을 수행하였다. 정적 연소실의 화학 평형 해석을 이용하여 연소실의 압력을 계산하고, 팽창과정의 열역학 해석을 통하여 열에너지의 운동에너지로 변환되는 내탄도 과정을 계산하였다. 공기역학적 지식을 도입한 구형 탄도 궤적 해석을 통하여 비행거리를 추정할 수 있었으며, 이를 통하여 감자총의 에너지 변환 효율 및 혼합기의 당량비를 추정하였다. 본 과제는 재활용 자재를 이용하여 학부 수준에서 열-유체역학공학 지식을 활용하여 실습하고 학생들의 관심을 유발할 수 있는 적당한 예로 여겨진다.

가스발생기 산화제 개폐밸브 구조 해석 (Structural Analysis of a Gas Generator Oxidizer Shut-Off Valve)

  • 류승훈;홍문근;유재한;이수용
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.413-416
    • /
    • 2009
  • 액체로켓 엔진에서 산화제를 가스발생기에 공급하는 가스발생기 산화제 개폐밸브는 가스 발생기 연소압 이상의 높은 압력에서 구조적인 안정성을 확보하여야 한다. 본 연구에서는 내압 하중 조건을 받는 밸브의 경량화를 위하여 응력 집중 부위의 형상을 변화시켜가며 정적 응력 해석을 수행하였다. 그리고 최대 응력이 항복응력을 넘지 않으며 최소 중량을 가지는 밸브 형상을 제시하였다. 또한, 응력 집중부에 대한 전체 밸브 사이즈 변화의 영향도 살펴보았다.

  • PDF

CNG 직접분사식 연소기에서의 열량해석(2) : 비균질급기 (Analysis of Heat Quantity in CNG Direct Injection Bomb(2) : Inhomogeneous Charge)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.24-31
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyzer the heat quantity of inhomogeneous charge methane-air mixture. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. It is shown that the effect of stratification is not significant in case of the overall excess air ratio of 1.1, mainly due to the higher heat loss and lower thermal efficiency compared to those of homogeneous condition. In the case of the overall excess air ratio of 1.4, as the initial charge pressure decreases, the CHR ratio has been decreased while the HL ratio has been increased, Generally, as the initial charge pressure increases, the amount of injection mixture has been decreased and has resulted in lower mean velocity and turbulence intensity for injection mixture. Also, the injected mixture is too rich to result in mixing deficiency in combustion chamber. From these results, it could be possible to acquire the improvement of thermal efficiency and the reduction of heat loss simultaneously through the 2-stage injection in CNG direct injection engine.

CNG 직접분사식 연소기에서의 열량해석(1) :균질급기 (Analysis of Heat Quantity in CNG Direct Injection Bomb(1) : Homogeneous Charge)

  • 최승환;전충환;장영준
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.17-23
    • /
    • 2004
  • A cylindrical constant volume combustion bomb is used to investigate the combustion characteristics and to analyze the heat quantity of homogeneous charge methane-air mixture under various initial pressures, excess air ratios and ignition times. As the overall pressure increase, the values of maximum combustion pressure, maximum heat release rate and cumulative heat release have been increased. But it is not very meaningful to compare with some values such as maximum combustion pressure, maximum heat release rate and cumulative heat release for different overall pressure due to the different heat energy of supplied fuel. So the each value is needed to be compared with normalized value, which is divided by the entered fuel energy. To analyze the heat quantity, some definitions including the CHR ratio, the UHC ratio and the HL ratio are needed and are calculated. As the overall pressure increase, the CHR ratios and the UHC ratios have been decreased, while the HL ratios have been increased. The CHR ratio of 300 ms has the higher value than that of 10000ms, and the HL ratios of 300 ms have a lower value.