• Title/Summary/Keyword: 정적해석법

Search Result 335, Processing Time 0.026 seconds

A Study on a Nonlinear Cable Finite Element (非線形 케이블 有限要素에 관한 硏究)

  • 장승필;박정일
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.1 no.1
    • /
    • pp.93-101
    • /
    • 1989
  • A geometrically nonlinear cable finite element is presented to use in the static or dynamic modeling of offshore and onshore structures such as guyed tower, tension leg platform or mooring buoy, submarine cable, cable-stayed bridge, suspension bridge, cable roof and so on. The cable finite element is derived directly from the compatibility equations and flexibility matrix of elastic catenary cable theory for the arbitary plane loading and geome try. A general and virsatile computer program has been developed to perform the analyses of cable member itself or cable guyed or suspened structures, in which Newmark-$\beta$ method is used to obtain a time domain solution and Newton-Raphson iteration method is used to solve the nonlinear system of compatibility equations of cable and algebraic static or dynamic equations at each time step. The results from the static and dynamic analysis of a cable member by the computer program are summarized and presented.

  • PDF

A Study on Resonance and Interference of a Cooling Fan Assembly by Using FEM (유한요소법을 이용한 냉각홴의 진동 및 간섭에 관한 연구)

  • Seo Jong-Hwi;Song Ha-Jong;Park Tae-Won;Kim Joo-Yong;Jung Il-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.903-909
    • /
    • 2004
  • A CFA(cooling fan assembly) is composed of a fan, motor and shroud, which is at the back of the automotive radiator. By forcing the wind to pass, the CFA controls the cooling performance of the radiator. The noise and vibration of the CFA may be primarily due to the resonance between the CFA and engine. The Interference among the fan, shroud and radiator by deformation is considered when the CFA is designed. In this paper, in order to analyze the structural vibration of the CFA for automobiles, a finite element model of the CFA is established by using a commercial FEM code. After the finite element modeling, the natural frequencies and the mode shapes are obtained from the FE analysis. The natural frequencies are obtained from the vibration test as well. Then, the results of the vibration test are compared with those of the FE analysis. The natural frequencies obtained by experiment have a great similarity to the results from FE model. We have confirmed the validity of the FE model and verify the structural safety for the resonance. The stress and displacements are obtained from FE analysis. We have confirmed the safety for the interference and failure.

Detection of unexploded ordnance (UXO) using marine magnetic gradiometer data (해양 자력구배 탐사자료를 이용한 UXO 탐지)

  • Salem Ahmed;Hamada Toshio;Asahina Joseph Kiyoshi;Ushijima Keisuke
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.97-103
    • /
    • 2005
  • Recent development of marine magnetic gradient systems, using arrays of sensors, has made it possible to survey large contaminated areas very quickly. However, underwater Unexploded Ordnances (UXO) can be moved by water currents. Because of this mobility, the cleanup process in such situations becomes dynamic rather than static. This implies that detection should occur in near real-time for successful remediation. Therefore, there is a need for a fast interpretation method to rapidly detect signatures of underwater objects in marine magnetic data. In this paper, we present a fast method for location and characterization of underwater UXOs. The approach utilises gradient interpretation techniques (analytic signal and Euler methods) to locate the objects precisely. Then, using an iterative linear least-squares technique, we obtain the magnetization characteristics of the sources. The approach was applied to a theoretical marine magnetic anomaly, with random errors, over a known source. We demonstrate the practical utility of the method using marine magnetic gradient data from Japan.

Natural Frequency Characteristics of Vertically Loaded Barrettes (수직하중을 받는 Barrette 말뚝의 고유진동수 특성)

  • Lee, Joon Kyu;Ko, Jun Young;Choi, Yong Hyuk;Park, Ku Byoung;Kim, Jae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.39-48
    • /
    • 2021
  • In this paper, an analytical model is proposed for assessing the natural frequency of barrettes subjected to vertical loading. The differential equation governing the free vibration of rectangular friction piles embedded in inhomogeneous soil is derived. The governing equation is numerically integrated by Runge-Kutta technique and the eigenvalue of natural frequency is computed by Regula-Falsi method. The numerical solutions for the natural frequency of barrettes compare well with those obtained from finite element analysis. Illustrated examples show that the natural frequencies increase with an increase of the cross-sectional aspect ratio, the friction resistance ratio and the soil stiffness ratio, and decrease with an increase of the friction aspect ratio, the slenderness ratio and the load factor, respectively.

Analysis and Evaluation of CPT Cone Factor for Undrained Shear Strength Estimation of Pusan Clay (부산지역 점토의 비배수전단강도 평가를 위한 CPT 콘계수 해석 및 평가)

  • Park, Young-Hwan;Kim, Min-Ki;Kim, Chang-Dong;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.77-85
    • /
    • 2007
  • In order to estimate undrained shear strength and evaluate cone factors, various in-situ and laboratory test results at new harbor construction area near Pusan were analyzed. To evaluate Nk values and equation applicable in Korea, measured and theoretical cone factors were compared based on the test results. For comparison, various analytical solutions were adopted and used. Adopted methods include cavity expansion solutions of Baligh (1975) and Yu (1993) and steady state solutions of Teh and Houlsby (1991) and Yu et al. (2000). According to the result of comparison, cavity expansion solutions were found to be reasonable for the CPTu-based undrained shear strength evaluation.

Precast Segmental PSC Bridge Columns with Precast Concrete Footings : II. Experiments and Analyses (조립식 기초부를 갖는 프리캐스트 세그먼트 PSC 교각 : II. 실험 및 해석)

  • Kim, Tae-Hoon;Kim, Young-Jin;Lee, Jae-Hoon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.407-419
    • /
    • 2009
  • The purpose of this study is to investigate the seismic behavior of precast segmental PSC bridge columns with precast concrete footings and to provide the details and reference data. Six precast segmental PSC bridge columns were tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is modified to predict the inelastic behaviors of segmental joints. This study documents the testing of precast segmental PSC bridge columns with precast concrete footings and presents conclusions based on the experimental and analytical findings.

Case studies of shallow marine investigations in Australia with advanced underwater seismic refraction (USR) (최신 수중 탄성파 굴절법(USR)을 이용한 호주의 천부해양탐사 사례연구)

  • Whiteley, Robert J.;Stewart, Simon B.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2008
  • Underwater seismic refraction with advanced interpretation approaches makes important contributions to shallow marine exploration and geotechnical investigations in Australia's coastal areas. A series of case studies are presented to demonstrate the recent applications of continuous and static USR methods to river crossing and port infrastructure projects at various sites around Australia. In Sydney, static underwater seismic refraction (USR) with bottom-placed receivers and borehole seismic imaging assisted the development of improved geotechnical models that reduced construction risk for a tunnel crossing of the Lane Cove River. In Melbourne, combining conventional boomer reflection and continuous USR with near-bottom sources and receivers improved the definition of a buried, variably weathered basalt flow and assisted dredging assessment for navigation channel upgrades at Geelong Ports. Sand quality assessment with continuous USR and widely spaced borehole information assisted commercial decisions on available sand resources for the reclamation phase of development at the Port of Brisbane. Buried reefs and indurated layers occur in Australian coastal sediments with the characteristics of laterally limited, high velocity, cap layers within lower velocity materials. If these features are not recognised then significant error in depth determination to deeper refractors can occur. Application of advanced refraction inversion using wavefront eikonal tomography to continuous USR data obtained along the route of a proposed offshore pipeline near Fremantle allowed these layers and the underlying bedrock refractor to be accurately imaged. Static USR and the same interpretation approach was used to image the drowned granitic regolith beneath sediments and indurated layers in the northern area of Western Australia at a proposed new berthing site where deep piling was required. This allowed preferred piling sites to be identified, reducing overall pile lengths. USR can be expected to find increased application to shallow marine exploration and geotechnical investigations in Australia's coastal areas as economic growth continues and improved interpretation methods are developed.

Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring (복합재 판스프링의 재료특성에 따른 스프링 강성변화와 초기 파단하중 예측)

  • Oh, Sung Ha;Choi, Bok Lok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1345-1350
    • /
    • 2014
  • This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses.

Sensitivity Analysis on the Lateral Behavior of Diagrid Structure (다이아그리드 구조 시스템의 횡적 거동에 대한 민감도 해석)

  • Ahn, Keun-Woo;Yang, Jae-Kwang;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.73-82
    • /
    • 2015
  • In evaluating lateral behavior on the seismic and wind load, the purpose of sensitivity analysis is to find critical variables and to identify characteristic response with variability of variables. The sensitivity analysis is very important in structural diagnosis, repair and reinforcement field. This study investigates the sensitivity by linear static analysis applying the TDA method in changing angles of diagrid braces on the same height structures. In case of mid rise model, under the seismic load, the brace member is determined as a major variable at $58^{\circ}$ but a high rise model, under the wind load, has the brace member as a major variable at $67.4^{\circ}$. In addition, location of critical sensitivity on the mid rise model is distributed over middle section, while it is distributed lower section on the high rise model.

Aristotle's Static World and Traditional Education (아리스토텔레스의 정적인 세계와 전통적인 교육)

  • Oh, Jun-Young;Son, Yeon-A
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.2
    • /
    • pp.158-170
    • /
    • 2022
  • The purpose of this study is to understand the characteristics of Aristotle's view of nature that is, the static view of the universe, and find implications for education. Plato sought to interpret the natural world using a rational approach rather than an incomplete observation, in terms of from the perspective of geometry and mathematical regularity, as the best way to understand the world. On the other hand, Aristotle believed that we could understand the world by observing what we see. This world is a static worldview full of the purpose of the individual with a sense of purposive legitimacy. In addition, the natural motion of earthly objects and celestial bodies, which are natural movements towards the world of order, are the original actions. Aristotle thought that, given the opportunity, all natural things would carry out some movement, that is, their natural movement. Above all, the world that Plato and Aristotle built is a static universe. It is possible to fully grasp the world by approaching the objective nature that exists independently of human being with human reason and observation. After all, for Aristotle, like Plato, their belief that the natural world was subject to regular and orderly laws of nature, despite the complexity of what seemed to be an embarrassingly continual change, became the basis of Western thought. Since the universe, the metaphysical perspective of ancient Greece and modern philosophy, relies on the development of a dichotomy of understanding (cutting branches) into what has already been completed or planned, ideal and inevitable, so it is the basis of traditional teaching-learning that does not value learner's opinions.