• Title/Summary/Keyword: 정유량 밸브

Search Result 10, Processing Time 0.025 seconds

Spring Length Effect on the Flow Capacity of automatic Flow-Temperature Control Valve (자동 정유량 온도조절밸브의 스프링 길이가 밸브 용량에 미치는 영향)

  • Yoo, Seon-Hak;Kang, Seung-Duk;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.174-177
    • /
    • 2003
  • The automatic temperature control valve is used to control the flow rate of heating water in the large apartment complex and buildings. It is important to have simillar heating flow rate in the apartments, even though the apartment is top or bottom floors. To achieve those purposes, the automatic flow-temperature control valve was developed. The perfromance of this control valve is effected by the catridge shape and spring length. The flow capacity of this control valve is obtained with the different shape of catridges and with change of spring length.

  • PDF

Development of Y Strainer Type Automatic Flow Rate Regulating Valve (Y 스트레이너형 자동 정유량 조절 밸브의 개발)

  • Yoon, Joon-Yong;Kwon, Woo-Chul
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.1 s.40
    • /
    • pp.49-55
    • /
    • 2007
  • An 'Y' strainer type automatic flow rate regulating valve, which functions are to remove impurities from hot water inside the pipe and to maintain a constant flow rate regardless of variations of the differential pressure between valve inlet and outlet at the same time, is developed for distributing hot water equally to several pipes with district heating or central heating system. Numerical analysis of the three dimensional turbulent flow field in a valve shape is carried out to confirm the flow field whether the designed regulator shape is acceptable or not. The final developed valve improves installation time and cost and maintenance ability comparing with set-up 'Y' strainer and regulator separately. Tolerance for the nominal flow rate is also satisfied within ${\pm}5%$.

CFD for Y-type Constant Flowrate Valve Design (Y형 세대별 정유량 밸브 개발에서의 CFD의 활용)

  • Kwon, U-Cheol;Lee, Byeong-Huee
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.488-491
    • /
    • 2004
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve shape is carried out to confirm the flow field whether the designed valve shape is good or not. The simulation of the incompressible flow in a constant flowrate control valve is performed by using the commercial code, FLUENT/UNS 6.0. The results of flow field show the designed valve has some problems, therefore these will be good data for new valve design.

  • PDF

Discharge Coefficients of Orifice Hole in the Cartridge of Constant Flow Control Valve (정유량 밸브의 카트리지의 오리피스 구멍의 유출계수)

  • Yoo, Seon-Hak;Kang, Seung-Duk;Yang, Eui-Seok;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.305-308
    • /
    • 2004
  • The constant flow control valve is used to control the flow rate of heating water in the large apartment complex and buildings. It is important to have similar heating flow rate in the apartments, even though the apartment is top or bottom floors. To achieve those purposes, the constant flow control valve was developed. The performance of this control valve is effected by hole area and discharge coefficients of the cartridge holes. The discharge coefficients of orifice hole in the cartridge were testes with various sizes of holes and various flow direction in the holes. The discharge coefficients decreased as the hole size increased due to the collision at the cartridge wall of water jet. The effects of the flow direction at the hole were not significant on the discharge coefficients.

  • PDF

A Study on Improved Operation of Apartment Heating System in a Machine Room (공동주택 기계실 난방설비 운전 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • This study proposes an idea for energy saving in apartment machine rooms. A conventional district heating system is equipped with constant-flow pumps and bypass valves to regulate pump differential pressure. Each family unit is equipped with a constant-flow on/off valve. This leads to excessive hot water circulation and a high return temperature. To reduce energy loss, this study assumes that each family unit is renovated with a heating valve which regulates the return temperature at $35^{\circ}C$. The hot water supply pump is also replaced with a pump with an inverter to vary flow rate. Expected energy savings is then estimated from field test data. According to the results, pump electricity consumption was reduced by 6,100 kWh for a family unit building over about half a year. The supply temperature can also be lowered by $5^{\circ}C$, which can contribute to a production of electricity of 10.3 kWh/ton of hot water.

A Study on Improved Heating Performance of an Apartment Housing Unit (공동주택 세대별 난방 성능 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Most hot water heating valves for apartments are constant-flow types, which limit the flow rate through an individual household for even distribution of heating water to other households. The constant-flow type is implemented by an on-off control. As a result, heating water is supplied intermittently and hence, indoor air temperature also fluctuates. Returning water temperature is also high, which reduces energy efficiency. To implement continuous feedback control, the indoor temperature dynamics was simulated to fit a measured temperature history by a state-of-the-art physical model. From the model, it was found that the most important disturbance is outdoor temperature and its effect on indoor temperature lasts about an hour. To cope with the slow response and the significant disturbance, a prediction control with proportional feedback is proposed. The control was found to be successful in implementing continuous heating water flow and improved indoor temperature control.

A Study on the Application Method of Cold & Hot Water Manifold System for Hot Water Supply System in Residential Buildings (주거건물의 급탕방식별 급수.급탕헤더시스템 적용방안에 관한 연구)

  • Cha, Min-Chul;Je, Sung-Ho;Seok, Ho-Tae
    • Journal of the Korean housing association
    • /
    • v.19 no.1
    • /
    • pp.79-88
    • /
    • 2008
  • Hot water is used by having a wash, dishes, taking tub and drinking water in residential buildings, and the use objective is to raise comfort of human body sense, washing and sterilization effect and so on. Cold & hot water supply system is understanded simpler than HVAC systems relatively, so it is true that pace of performance improvement is slower than other systems for plan and technical development. In this study, the performance evaluations are conducted under the condition of composition ratio by 1:1 for cold & hot water supply manifold system using functionally complex valves such as constant flow regulating valve and 3-way mixing valve in the area of $105.6m^2$ apartment which consist of the largest part of the whole apartment. Also, flow rate related to simultaneous use of faucets and change of hot water temperature are compared with the existing method.

Simulation of Pipe Network for Optimum Heat Supply in the Hot Water Heating System of Apartment House (공동주택 온수난방 시스템의 적정 열공급을 위한 배관망 시뮬레이션)

  • Kim, J.Y.;Mim, M.K.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 1993
  • Pipe network of hot water heat supply system in an apartment house was analyzed. Flowrate and supply heat capacity of each household in which constant flowrate balancing valve is installed in a single zone system were calculated and the results were investigated. In the existing piping system, the non-uniformity of heat supply with floors due to the static pressure and temperature difference between supply main and return main can not be avoided and this tendency get intense with the increase of the height of building. The non-uniformity of heat supply can be prevented by the installation of balancing valve at each household, however if the performance of supply pump is not sufficient to overcome the energy loss due to the installation of balancing valve for constant flow rate or if the selection of the valve capacity is not adequate, the valves will may lose their controllability.

  • PDF