• Title/Summary/Keyword: 정식기

Search Result 476, Processing Time 0.03 seconds

Effects of Cultivation Method on the Growth and Yield of a Cucumber for Development of a Robotic Harvester (오이수확용 로봇개발을 위한 재배방식이 생육 및 수량에 미치는 영향)

  • Lee, Dae-Won;Min, Byung-Ro;Kim, Hyun-Tae;Im, Ki-Taek;Kim, Woong;Kwon, Young-Sam;Nam, Yooun-Il;Choi, Jae-Woong;Sung, Si-Hong
    • Journal of Bio-Environment Control
    • /
    • v.7 no.3
    • /
    • pp.226-236
    • /
    • 1998
  • If the lowest leaves of the cucumber were removed or training cultivable method was changed, a computer vision system could divide well the cucumber fruit from the others, and also an end-effector could reach and grip cucumber fruit and cut well its fruit stalk. Therefore, this study investigated whether removal leaves and training cultivable method of a cucumber could affect its growth and yield. They can help to be designed the vision system and the end-effector. A cucumber fruit grew by 6-l5cm long for 2 days regardless of removing leaves. Removal leaves didn't affect growth of cucumber fruit. Number of cucumber fruit was produced within 10% different values by three methods (A, B, C) of removal leaves. The first grade rate (best quality) of 4 B and C was 56.7%, 53.1%, 56.3% respectively. Consequently, proper removal leaves were better than traditional way, which does not remove a leaf, because they make cucumber plant ventilate more freely and absorb more light.

  • PDF

Effects of Manufacturing Methods of Broiler Litter and Bakery By-product Ration for Ruminants on Physico-chemical Properties (육계분과 제과부산물을 이용한 반추가축용 완전혼합사료(TMR) 제조 시 가공처리 방법이 물리화학적 특성에 미치는 영향)

  • Kwak, W.S.;Yoon, J.S.;Jung, K.K.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.593-606
    • /
    • 2003
  • This study was conducted to develop effective manufacturing methods of a total mixed ration(TMR) composed of broiler litter(BL) and bakery by-product(BB) for ruminants. Five experiments included a small-scaled manufacture of TMR using a deepstacking method(Exp. 1), its pelletization(Exp. 2), its field-scaled manufacture(Exp. 3), a field-scaled manufacture using an ensiling method(Exp. 4), and a mixing process of deepstacked BL and BB prior to feeding(Exp. 5). BL and BB were mixed at a ratio which makes total digestible nutrients of the TMR 69%. For each experiment, temperature, appearance and physico-chemical properties were recorded and analyzed. The chemical composition data revealed that the mixture of BL and BB showed nutritionally additive balance which resulted from a considerable increase(P<0.05) of organic matter and a desirable decrease(P<0.05) of protein and fiber up to the requirement level for growing ‘Hanwoo’ steers. Deepstacking of BL and BB in Exp. 1 and 3 resulted in a sufficient increase of stack temperature for pasteurization, little chemical losses, appearance of white fungi on the surface, and partial charring due to excess stack temperature. For Exp. 2, its pelleting, which was successful using a simple, small-scaled pelletizer, resulted in a little loss(P<0.05) of organic matter and an increase(P<0.05) of indigestible protein(ADF-CP). Ensiling the mixture in Exp. 4 made little effect on chemical composition; however, one month of the ensiling period was not enough for favorable silage parameters. Deepstacking BL alone in Exp. 5 tended(P<0.1) to decrease true protein : NPN ratio and hemicellulose content and increase ADF-CP content due to the heat damage occurred. Deepstacking or ensiling of BL-BB mixtures and simple incorporating of BB into deepstacked BL prior to feeding could be practical and nutrients-preservative methods in TMR manufacture for beef cattle, although ensiling needed further hygienic evaluation.

Effect of Cooling in a Semi-closed Greenhouse at High Temperature on the Growth and Photosynthesis Characteristics in Paprika (고온기 반밀폐형온실 냉방이 파프리카 생육과 광합성 특성에 미치는 영향)

  • Kim, Eun Ji;Park, Kyoung Sub;Goo, Hei Woong;Park, Ga Eun;Myung, Dong Ju;Jeon, Yong Hwan;Na, Haeyeong
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.335-341
    • /
    • 2021
  • In this study, experiments were conducted to investigate the effects of high- temperature stress on paprika in a semi-closed greenhouse where cooling is available and a normal plastic greenhouse. Paprika grown in a semi-closed greenhouse in which geothermal cooling is provided showed a significantly higher speed of photosynthesis than paprika grown in a 3-layer plastic greenhouse in which there is no cooling system. It suggests that the photosynthesis speed of paprika in a plastic house decreases owing to high temperature stress. Plant height increased by 13cm more in the semi-closed greenhouse, and the size of leaf showed similar growth speed until the 2nd week after transplanting, however, after 3 weeks, the semi-closed greenhouse showed a big difference by 47% compared with the plastic greenhouse. In terms of the fruit count, the semi-closed greenhouse had 10.6 fruits/plant and the plastic greenhouse had 4.6 fruits/plant, indicating that the semi-closed greenhouse had a higher number of fruits by 130% than the plastic greenhouse. The fruit weight also presented a difference between the semi-closed greenhouse and the plastic greenhouse by 46%, which is 566.7g/plant and 387g/plant, respectively. According to the above mentioned results, it was validated that when paprika is cultivated in a semi-closed greenhouse where a cooling system is applied, photosynthesis and growth were better than in the normal plastic greenhouse. Thus, if the hot summer season is overcome by applying the elemental technologies for the cooling system to the normal plastic greenhouse, farm income may increase through improvement in the yield and quality.

Development of Late Bolting and New Deep Red Leaf with Wrinkled Lettuce 'Chunpungjeokchukmyeon' (추대가 늦고 색깔이 진한 새로운 잎상추 '춘풍적축면' 육성)

  • Jang, Suk-Woo;Hur, Youn-Young;Choi, Mi-Ja;Kwon, Young-Seok;Kim, Jeom-Sun;Lee, Jong-Nam;Lee, Eung-Ho;Seo, Myeong-Hun;Park, Jae-Ho;Jang, Ik;Jang, Mi-Hyang;Hwang, Hae-June;Ko, Sun-Bo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.6
    • /
    • pp.627-631
    • /
    • 2010
  • A new cultivar of lettuce (Lactuca sativa L.) with wrinkled traverse elliptic and deep red leaf, 'Chunpungjeokchukmyeon' which has late bolting and deep red expression leaf color was developed from a cross between 'Pojabijeokchukmyeon' (red leaf color and late bolting) and 'Meokchima' (Deep red and low yield). The cross and selection for advanced lines had been done by the pedigree method during 2000-2007. The advanced lines were evaluated for yield and adaptability at several locations in Korea (Gangwon-do, Gyeonggi-do, Chungcheongbuk-do, Jeollabuk-do, Gyeongnam-do, and Jeju-do) from 2008 to 2009. The 'Chunpungjeokchukmyeon' has gray seed color and traverse elliptic leaves. The type of matured stage is medium shape between 'chukmyeon' and 'chima' leaf lettuce. Compared to 'Dukseomjeokchukmyeon', marketable yield of 'Chunpungjeokchukmyeon' was higher by 6% (at 372 g per plant) and 'Chunpungjeokchukmyeon' has particularly improved expression of deep red leaf color in high temperature cultivation in the field. The shelf-life of 'Chunpungjeokchukmyeon' was three weeks longer than 'Dukseomjeokchukmyeon' at 4$^{\circ}C$. The anthocyanin content of 'Chunpungjeokchukmyeon' was higher than that of 'Dukseomjeokchukmyeon' with 17.5 mg/100g. The BSL (latucin+8-deoxylactucin+lactucopicrin) content of 'Chunpungjeokchukmyeon' is lower than that of 'Dukseomjeokchukmyeon'. Furthermore, its taste is better, more crispy, and sweeter than those of 'Dukseomjeokchukmyeon'. So we recommend that new cultivar 'Chunpungjeokchukmyeon' can be suitable for cultivation in spring season than summer season.

Changes in Inorganic Element Concentrations in Leaves, Supplied and Drained Nutrient Solution according to Fruiting Node during Semi-forcing Hydroponic Cultivation of 'Bonus' Tomato ('Bonus' 토마토 반촉성 수경재배 시 착과절위에 따른 식물체, 공급액 및 배액의 무기성분 농도 변화)

  • Lee, Eun Mo;Park, Sang Kyu;Lee, Bong Chun;Lee, Hee Chul;Kim, Hak Hun;Yun, Yeo Uk;Park, Soo Bok;Chung, Sun Ok;Choi, Jong Myung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.1
    • /
    • pp.38-45
    • /
    • 2019
  • Recycling of drained nutrient solution in hydroponic cultivation of horticultural crops is important in the conservation of the water resources, reduction of production costs and prevention of environmental contamination. Objective of this research was to obtain the fundamental data for the development of a recirculation system of hydroponic solution in semi-forcing cultivation of 'Bonus' tomato. To achieve the objective, tomato plants were cultivated for 110 days and the contents of inorganic elements in plant, supplied and drained nutrient solution were analyzed when crop growth were in the flowering stage of 2nd to 8th fruiting nodes. The T-N content of the plants based on above-ground tissue were 4.1% at the flowering stage of 2nd fruiting nodes (just after transplanting), and gradually get lowered to 3.9% at the flowering stage of 8th fruiting nodes. The tissue P contents were also high in very early stage of growth and development and were maintained to similar contents in the flowering stage of 3rd to 7th fruiting nodes, but were lowed in 8th node stages. The tissue Ca, Mg and Na contents in early growth stages were lower than late growth stages and the contents showed tendencies to rise as plants grew. The concentration differences of supplied nutrient solution and drained solution in $NO_3-N$, P, K, Ca, and Mg were not significant until 5 weeks after transplanting, but the concentration of those elements in drained solution rose gradually and maintained higher than those in supplied solution. The concentrations of B, Fe, and Na in drained solution were slightly higher in the early stages of growth and development and were significantly higher in the mid to late stages of growth than those in supplied solution. The above results would be used as a fundamental data for the correction in the inorganic element concentrations of drained solution for semi-forcing hydroponic cultivation of tomato.

Effect of Soil Water Potential on the Fruit Quality and Yield in Fertigation Cultivation of Paprika in Summer (여름철 파프리카 관비재배시 토양수분포텐셜이 과실품질 및 수량에 미치는 영향)

  • Rhee, Han Cheol;Choi, Gyoeng Lee;Jeong, Jae Woan;Cho, Myeung Hwan;Yeo, Kyung Hwan;Kim, Da Mi;An, Chul Geun;Lee, Dong Yul
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.378-384
    • /
    • 2013
  • This study was conducted to identify the effect of soil water potential on the fruit quality and yield of paprika in summer fertigation cultivation. Treatments of soil water potential during cultivation were composed of -10, -20, and -30 kPa, respectively. The plant height of early growth was increased by high soil water potential (-10 kPa) treatment all of 'Cupra' and 'E499524' (mini-paprika) varieties. Mean fruit weight was increased by -20 kPa soil water potential treatment compared with the other treatments. The fruit number per plant was not affected by soil water potential in 'Cupra' variety but was increased by -20 kPa soil water potential treatment in E499524 variety (mini-paprika). The yield of soil water potential treatment of -20 kPa was higher than those of the other treatments. The flesh thickness and sugar content were not affected by soil water potential in 'Cupra' and 'E499524' (mini-paprika) varieties. The incidence of fruit cracking was decreased with decreasing soil water potential. Mineral contents of plants such as nitrogen, potassium, calcium, magnesium etc. were not affected in soil water potential.

Growth and Phytochemicals of Lettuce as Affected by Light Quality of Discharge Lamps (방전램프의 광질에 따른 상추의 생장 및 파이토케미컬 분석)

  • Lee, Jae Su;Nam, Sang Woon;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.400-407
    • /
    • 2013
  • This study was performed to analyze the effect of light quality of discharge lamp on growth and phytochemicals contents of lettuce (Lactuca sativa L. cv. Jeokchima) grown under metal halide (MH) lamp, high-pressure sodium (HPS) lamp, and xenon (XE) lamp in a plant factory. Cool-white fluorescent (FL) lamp was used as the control. Photoperiod, air temperature, relative humidity, $CO_2$ concentration, and photosynthetic photon flux (PPF) in a plant factory were 16/8 h (day/night), $22/18^{\circ}C$, 70%, 400 ${\mu}mol{\cdot}mol^{-1}$, and 200 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. MH lamp had the greatest fraction of blue light (400-500 nm) of 23.0%. However, HPS lamp had the lowest fraction of 4.7% for blue light and the greatest fraction of 38.0% for red light (600-700 nm). At 11 and 21 days after transplanting, leaf length, leaf width, leaf area, shoot fresh weight, and shoot dry weight of lettuce as affected by the light quality of the discharge lamp were significantly different. The leaf area of lettuce grown under HPS, MH, and XE lamp increased by 45.7%, 16.3%, and 9.5%, respectively, as compared to the control. These results were similar for shoot fresh weight. Growth characteristics of lettuce grown under HPS lamp increased since HPS lamp had more fraction of red light. However, growth of lettuce grown under MH and XE lamp decreased since they had more fraction of blue light. As compared to the control, the ascorbic acid in lettuce leaves grown under discharge lamp decreased. The greatest anthocyanins accumulation of 0.70 mg/100 g was found at MH treatment. Anthocyanins content in lettuce leaves grown under XL and HPS lamp were 79.3% and 8.6%, respectively, compared with the control. Growth and phytochemicals contents of lettuce were highly affected by the different spectral distribution of the discharge lamp. These results indicate that the combination of discharge lamp or LED lamp for enhancing the light quality of discharge lamps is required to increase the growth and phytochemicals accumulation of lettuce in controlled environment such as plant factory.

Changes in Nutrient Element Concentrations and Growth of Cucumber Plants (Cucumis sativus L. cv. Joeun Baegdadagi) as Affected by Nutrient Solution Composition in Recirculating Hydroponic Systems (순환식 수경재배시 배양액조성에 따른 배양액 양분농도 변화 및 오이 생육)

  • Roh, Mi-Young;Choi, Gyeong-Lee;Rhee, Han-Cheol;Seo, Tae-Cheol;Kim, Wan-Soon;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.363-369
    • /
    • 2009
  • This experiment was conducted to find out the effect of nutrient solution composition on the growth of cucumber plants and the changes in macro-elements in nutrient solutions in recirculating hydroponic systems. Cucumber plants (Cucumis sativus L. cv. Joeun Baegdadagi) were grown in closed perlite cultivation systems supplied with different nutrient solutions developed by NHRS (National Horticultural Research Station in Japan), Yamasaki, PBG (Proefstation voor Bloemisterij en Glasgroente), and NIHHS (National Institute of Horticultural and Herbal Science in Korea). The concentrations of $NO_{3^-}N$, $Ca^{2+}$, $Mg^{2+}$, and $SO_{4^-}S$ in the recycled nutrient solutions increased but that of $NH_{4^-}N$ decreased gradually in all the treatments. The $PO_{4^-}P$ and $K^+$ concentrations were continuously reduced from the beginning of the harvest to the harvest peak period. There were no significant differences in the concentrations of $NO_{3^-}N$, $NH_{4^-}N$, and $Ca^{2+}$ in the recirculated nutrient solutions among four treatments, while the concentrations of $PO_{4^-}P$ and $K^+$ were lowest and those of $Mg^{2+}$ and $SO_{4^-}S$ were highest in the treatment of Yamasaki's nutrient solution. All growth-related parameters of cucumber plants except for leaf number were not significantly affected by the nutrient solution compositions. Due to its low concentrations of $PO_{4^-}P$ and $K^+$ in the recycled nutrient solution, however, the number and yield of cucumber fruits were lowest in the treatment of Yamasaki's nutrient solution.

Characterization of Symptom and Determination of Tissue Critical Concentration for Diagnostic Criteria in 'Maehyang' Strawberry (Fragaria $\times$ ananassa Duch.) as Influenced by Calcium Concentrations in the Fertigation Solution ('매향' 딸기의 칼슘 영양진단을 위한 결핍증상 및 식물체 내 한계농도)

  • Choi, Jong-Myung;Jeong, Suck-Kee;Yoon, Moo-Kyung
    • Journal of Bio-Environment Control
    • /
    • v.17 no.3
    • /
    • pp.231-237
    • /
    • 2008
  • Objective of this research was to investigate the effect of calcium concentrations in the fertilizer solution on growth and development of Ca deficiency in 'Maehyang' strawberry (Fragaria $\times$ ananassa Duch.). The margins of the youngest leaves were scorched and they developed a cupped shape as they were expanded in Ca deficient plants. The vein area of the youngest leaves became brown when the deficiency became severe. The quadratic responses were observed in dry weight production to elevated Ca concentrations in fertilizer solutions with the highest growth in 4.5 mM treatment. The regression equation was y=2.4026+1.0209x-$0.098x^2$ $(R^2=0.3546^{***})$. However, tissue Ca contents increased lineally as the Ca concentrations in fertilizer solutions were elevated (y=1.2108+0.1333x, $R^2=0.9189^{***}$). In changes of the fresh weight and Ca concentrations in petiole sap, fresh weight production showed quadratic responses to elevated Ca concentrations in fertilizer solution, but Ca concentration increased lineally. The equations in changes of fresh weight and Ca concentrations were y=9.273+4.882x-$0.4245x^2$ $(R^2=0.4935^{***})$ and y=52.311+3.2917x $(R^2=0.6918^{***})$, respectively. When the concentration of calcium at which plant growth was retarded by 10% is regarded as critical concentration level, the calcium contents based on dry weight of above ground plant tissue and in petiole sap should be in the range between 1.6 to 2.25% and 63 to $79mg{\cdot}kg^{-1}$, respectively.

Effect of the Concentration of Humic Acid on Growth and Yield of Organically Cultivated Hot-Pepper (휴믹산 농도가 유기농 고추의 생육 및 수량에 미치는 영향)

  • Kim, Min-Jeong;Shim, Chang-Ki;Kim, Yong-Ki;Park, Jong-Ho;Han, Eun-Jung;Ko, Byong-Gu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2017
  • The purpose of this study was to investigate the effect of humic acid on the germination, the growth and the yield of hot pepper when treated with organic hot pepper seedlings and growing season. The germination rate of 0.05% and 0.1% humic acid was higher than that of untreated, but the germination rates of 0.4% and 1.0% humic acid were 90.0% and 86.7%, respectively, compared with the control treatment (96.7%). At 30 days after transplanting, hot pepper treated with low (0.05%) or high (1.0%) concentration of humic acid decreased the growth of hot pepper seedlings, whereas 0.2% humic acid treatment significantly increased a average height (97.6 cm), leaf number (84.7) and fresh weight ($128.1g\;plant^{-1}$) of hot pepper. After 60 days of treatment with humic acid, the height of hot pepper was significantly longer in 0.2% humic acid. The mean green fruit number of 0.2%, 0.1% and 0.05% humic acid were not significantly different among the treatments, but the mean green pepper number of 0.4% and 1.0% humic acid treatments were the higher with 35.2% and 29.1%, respectively than other treatments. However, the fresh weight of green pepper was found to be $111.5g\;plant^{-1}$ more heavier than the untreated in 0.2% humic acid. The total ($5.8kg\;plant^{-1}$) and average ($1.4kg\;plant^{-1}$) fresh weight of pepper were higher than that of untreated control, except for the 1.0% humic acid treatment after 60 days of soil irrigation. The total weight of hot pepper treated with 0.2% and 0.1% humic acid treatment was $9.3kg\;plant^{-1}$ and $8.6kg\;plant^{-1}$, respectively, which were heavier than the other treatments. The effect of humic acid concentrations on soil microbial populations, pH and EC was investigated. The soil bacterial population density of 0.2% humic acid treatment was 3.5 times higher than that of untreated control soil. As the concentration of humic acid increased from 0.05% to 1.0%, pH and EC of hot pepper grown soil also increased.