Changes in Nutrient Element Concentrations and Growth of Cucumber Plants (Cucumis sativus L. cv. Joeun Baegdadagi) as Affected by Nutrient Solution Composition in Recirculating Hydroponic Systems

순환식 수경재배시 배양액조성에 따른 배양액 양분농도 변화 및 오이 생육

  • 노미영 (국립원예특작과학원 시설원예시험장) ;
  • 최경이 (국립원예특작과학원 시설원예시험장) ;
  • 이한철 (국립원예특작과학원 시설원예시험장) ;
  • 서태철 (국립원예특작과학원 시설원예시험장) ;
  • 김완순 (서울시립대학교 환경원예학과) ;
  • 이용범 (서울시립대학교 환경원예학과)
  • Published : 2009.12.31

Abstract

This experiment was conducted to find out the effect of nutrient solution composition on the growth of cucumber plants and the changes in macro-elements in nutrient solutions in recirculating hydroponic systems. Cucumber plants (Cucumis sativus L. cv. Joeun Baegdadagi) were grown in closed perlite cultivation systems supplied with different nutrient solutions developed by NHRS (National Horticultural Research Station in Japan), Yamasaki, PBG (Proefstation voor Bloemisterij en Glasgroente), and NIHHS (National Institute of Horticultural and Herbal Science in Korea). The concentrations of $NO_{3^-}N$, $Ca^{2+}$, $Mg^{2+}$, and $SO_{4^-}S$ in the recycled nutrient solutions increased but that of $NH_{4^-}N$ decreased gradually in all the treatments. The $PO_{4^-}P$ and $K^+$ concentrations were continuously reduced from the beginning of the harvest to the harvest peak period. There were no significant differences in the concentrations of $NO_{3^-}N$, $NH_{4^-}N$, and $Ca^{2+}$ in the recirculated nutrient solutions among four treatments, while the concentrations of $PO_{4^-}P$ and $K^+$ were lowest and those of $Mg^{2+}$ and $SO_{4^-}S$ were highest in the treatment of Yamasaki's nutrient solution. All growth-related parameters of cucumber plants except for leaf number were not significantly affected by the nutrient solution compositions. Due to its low concentrations of $PO_{4^-}P$ and $K^+$ in the recycled nutrient solution, however, the number and yield of cucumber fruits were lowest in the treatment of Yamasaki's nutrient solution.

본 시험은 순환식 수경재배시 배양액조성이 배양액 내 다량원소 농도의 변화 및 오이 생육에 미치는 영향을 구명하고자 수행되었다. 네 가지 배양액조성, 즉 일본 원시 배양액, 야마자키 오이 배양액, PBG 오이 순환식 배양액 및 원예원 오이 순환식 배양액이 급액되는 순환식 펄라이트 수경재배시스템에서 오이('조은백다다기' 품종)를 재배하였다. 네 가지 배양액조성 처리구 모두에서 순환배양액내 $NO_{3^-}N$, $Ca^{2+}$, $Mg^{2+}$$SO_{4^-}S$의 농도는 정식후일수가 진전됨에 따라 증가되었고 $NH_{4^-}N$의 농도는 점차적으로 감소되었다. 순환배양액내 $PO_{4^-}P$$K^+$의 농도는 과실수확 개시기부터 과실수확 최성기까지 계속적으로 감소되었다. 순환배양액내 $NO_{3^-}N$, $NH_{4^-}N$$Ca^{2+}$의 농도는 배양액조성 간에 큰 차이를 나타내지 않았다. 그러나, 야마자키 배양액을 이용한 오이 순환식 수경재배 시에 다른 세 가지 배양액조성에 비하여 $PO_{4^-}P$K^+$의 농도는 가장 낮아지고 $Mg^{2+}$$SO_4^{2-}$의 농도는 가장 높아지는 결과를 나타내었다. 엽수를 제외한 작물 생육은 배양액조성 간에 유의한 차이를 보이지 않았다. 그러나, 오이의 과수와 과실수량은 야마자키 배양액조성 처리에서 가장 적었는데, 그것은 순환배양액내 $PO_{4^-}P$$K^+$의 농도가 낮게 유지되었기 때문이다.

Keywords

References

  1. Bando, K. 1991a. Recirculating rockwool culture of tomato [1]. Agr. Hort. 66:61-66 (in Japanese)
  2. Bando, K. 1991b. Recirculating rockwool culture of tomato [2]. Agr. Hort. 66:68-72 (in Japanese)
  3. Bando, K. and H. Machida. 1992. Establishment of the productive techniques of rock wool culuture on tomatoes IV. Effect of nutrient solution compositions on the quality and yield in circular solution system. Bull. Tokushima Agric. Exp. Stn. 28:35-42 (in Japanese)
  4. Bando, K., H. Machida, and H. Kodo. 1988. Establishment of the productive techniques of rock wool culture on tomatoes . Effect of nutrient concentration on the quality and yield of tomato in circular solution culture. Bull. Tokushima Agric. Exp. Stn. 25:27-35 (in Japanese)
  5. Benoit, F. 1992. Practical guide for simple soilless culture techniques. European Vegetable R & D Center, Belgium, pp. 28-37
  6. Bohme, M. 1995. Effects of closed system in substrate culture for vegetable production in greenhouses. Acta Hort. 396:45-54
  7. Choi, E.Y., H.J. Lee, and Y.B. Lee. 2001. Mineral elements control of the nutrient solution in perlite culture of cucumber. J. Kor. Soc. Hort. Sci. 42:497-500 (in Korean)
  8. Ishihara, Y., H. Hitomi, and Y. Yamaki. 2006. Effect of nutrient composition used in the closed hydroponics system with capillary uptake method on nutrient element concentrations in the organic substrates and yield of tomato. Hort. Res. (Japan) 5:265-270 (in Japanese) https://doi.org/10.2503/hrj.5.265
  9. Isozaki, M., N. Konishi, M. Kuroki, Y. Nomura, and K. Tanaka. 2004. Growth of tomato plants and changes in nutrient element concentrations in the rockwool system with a device to recycle used nutrient solutions. J. Japan. Soc. Hort. Sci. 73:354-363 (in Japanese) https://doi.org/10.2503/jjshs.73.354
  10. Masuda, M., T. Takiguchi, and S. Matsubara. 1989. Yield and quality of tomato fruits, and changes of mineral concentration in different strengths of nutrient solution. J. Japan. Soc. Hort. Sci. 58:641-648 (in Japanese) https://doi.org/10.2503/jjshs.58.641
  11. Roh, M.Y., W.S. Kim, Y.H. Choi, and Y.B. Lee. 2008. Water uptake, growth and yield response of cucumber (Cucumis sativus L.) to nutrient solution concentration in closed hydroponic systems. Hort. Environ. Biotechnol. 49:78-84
  12. Roh, M.Y., Y.B. Lee, H.S. Kim, K.B. Lee, and J.H. Bae. 1997. Development of nutrient solution suitable for close system in substrate culture of cucumber. J. Bio. Fac. Env. 6:1-14 (in Korean)
  13. Sasaki, K. and I. Toshitaka. 1978. Study on the establishment of hydroponic techniques on fruit vegetables IV. Effect of nutrient solution concentration on growth and yield of tomato. Bull. Kanagawa Hort. Exp. Stn. 25:52-58 (in Japanese)
  14. Savvas, D. 2002. Nutrient solution recycling, pp. 299-343. In: D. Savvas and H. Passam (eds.). Hydroponic production of vegetables and ornamentals. Embryo publications, Athens, Greece
  15. Savvas, D. and G. Manos. 1999. Automated composition control of nutrient solution in closed soilless culture systems. J. Agric. Engng Res. 73:29-33 https://doi.org/10.1006/jaer.1998.0389
  16. Sonneveld, C. 1981. Items for application of macroelements in soilless culture. Acta Hort. 126:187-195
  17. Sonneveld, C. 2002. Composition of nutrient solutions, pp. 179-210. In: D. Savvas and H. Passam (eds.). Hydroponic production of vegetables and ornamentals. Embryo publications, Athens, Greece
  18. Sonneveld, C. and N. Straver. 1992. Voedingsoplossingen voor groenten en bloemen geteeld in water of substraten (Nutrient solutions for vegetables and flowers grown in water or substrates). Voedingsoplossingen glastuinbouw, No. 8, p. 15
  19. Stanghellini, C., W.Th.M. Van Meurs, F. Corver, E. Van Dullemen, and L. Simonse. 1998. Combined effect of climate and concentration of the nutrient solution on a greenhouse tomato crop. II. Yield quantity and quality. Acta Hort. 458:231-237
  20. Yamashita, F. and G. Hayashi. 1997. Studies on the year-round production system of tomatoes in water culture iV. Effects of the nutrient solution prescription, density and quality of supply in the circulation system. Res. Bull. Aichi Agric. Res. Ctr. 29:103-110 (in Japanese)
  21. Yamasaki, K. 1984. Hydroponic culture. Hakuyu-Sya, Tokyo, pp. 34-55 (in Japanese)
  22. Zekki, H., L. Gauthier, and A. Gosselin. 1996. Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. J. Amer. Soc. Hort. Sci. 121:1082-1088