• 제목/요약/키워드: 정상 모드

Search Result 376, Processing Time 0.026 seconds

Analysis of Transient Performance of KALIMER-600 Reactor Pool by Changing the Elevation of Intermediate Heat Exchanger (중간 열교환기 높이 상승에 의한 KALIMER-600 원자로 풀 과도 성능 변화 분석)

  • Han, Ji-Woong;Eoh, Jae-Hyuk;Kim, Seong-O
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.991-998
    • /
    • 2010
  • The effect of increasing the elevation of an IHX (intermediate heat exchanger) on the transient performance of the KALIMER-600 reactor pool during the early phase of a loss of normal heat sink accident was investigated. Three reactors equipped with IHXs that were elevated to different heights were designed, and the thermal-hydraulic analyses were carried out for the steady and transient state by using the COMMIX-1AR/P code. In order to analyze the effects of the elevation of an IHX between reactors, various thermal-hydraulic properties such as mass flow rate, core peak temperature, RmfQ (ratio of mass flow over Q) and initiation time of decay heat removal via DHX (decay heat exchanger) were evaluated. It was found that with an increase in the IHX elevation, the circulation flow rate increases and a steep rise in the core peak temperature under the same coastdown flow condition is prevented without a delay in the initiation of the second stage of cooling. The available coastdown flow range in the reactor could be increased by increasing the elevation of the IHX.

Prediction of the Successful Defibrillation using Hilbert-Huang Transform (Hilbert-Huang 변환을 이용한 제세동 성공 예측)

  • Jang, Yong-Gu;Jang, Seung-Jin;Hwang, Sung-Oh;Yoon, Young-Ro
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.5
    • /
    • pp.45-54
    • /
    • 2007
  • Time/frequency analysis has been extensively used in biomedical signal processing. By extracting some essential features from the electro-physiological signals, these methods are able to determine the clinical pathology mechanisms of some diseases. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. In this paper, we develop a new signal processing method using Hilbert-Huang Transform to perform analysis of the nonlinear and non-stationary ventricular fibrillation(VF). Hilbert-Huang Transform combines two major analytical theories: Empirical Mode Decomposition(EMD) and the Hilbert Transform. Hilbert-Huang Transform can be used to decompose natural data into independent Intrinsic Mode Functions using the theories of EMD. Furthermore, Hilbert-Huang Transform employs Hilbert Transform to determine instantaneous frequency and amplitude, and therefore can be used to accurately describe the local behavior of signals. This paper studied for Return Of Spontaneous Circulation(ROSC) and non-ROSC prediction performance by Support Vector Machine and three parameters(EMD-IF, EMD-FFT) extracted from ventricular fibrillation ECG waveform using Hilbert-Huang transform. On the average results of sensitivity and specificity were 87.35% and 76.88% respectively. Hilbert-Huang Transform shows that it enables us to predict the ROSC of VF more precisely.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF

Experimental and CFD Study on the Exhaust Efficiency of a Smoke Control Fan in Blind Entry Development Sites (맹갱도 굴진 작업공간내 방재팬의 화재연 배기효율에 관한 현장실험 및 CFD 연구)

  • Nguyen, Vanduc;Kim, Dooyoung;Hur, Wonho;Lee, Changwoo
    • Tunnel and Underground Space
    • /
    • v.28 no.1
    • /
    • pp.38-58
    • /
    • 2018
  • The ventilation system plays a crucial role in underground mine safety. The main objective of the ventilation system is to supply sufficient air to dilute the contaminated air at working places and consequently provide tenable environment during the normal operation, while it also should be capable of controlling the fire propagation and facilitate rescue conditions in case of fire in mines. In this study, a smoke control fan was developed for the auxiliary ventilation as well as the fire smoke exhaust. It works as a free-standing auxiliary fan without tubing to dilute or exhaust the contaminated air from the working places. At the same time, it can be employed to extract the fire smoke. This paper aims to examine the smoke control efficiency of the fan when combined with the current ventilation system in mines. A series of the site experiments and numerical simulations were made to evaluate the fan performance in blind entry development sites. The tracer gas method with SF6 was applied to investigate the contaminant behavior at the study sites. The results of the site study at a large-opening limestone mine were compared with the CFD analysis results with respect to the airflow pattern and the gas concentration. This study shows that in blind development entry, the most polluted and risky place, the smoke fan can exhaust toxic gases or fire smoke effectively if it is properly combined with an additional common auxiliary fan. The venturi effect for smoke exhaust from the blind entry was also observed by the numerical analysis. The overall smoke control efficiency was found to be dependent on the fan location and operating method.

Design and Development of VDL Mode-2 D8PSK Modem (VDL Mode-2 D8PSK 모뎀 설계 및 개발)

  • Gim, Jong-Man;Choi, Seoung-Duk;Eun, Chang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11C
    • /
    • pp.1085-1097
    • /
    • 2009
  • We present a structure and design method of the D8PSK modem compatible with the VDL mode-2 standard and performance test results of the developed modem. In VDL mode-2, the raised cosine filter is used only in the transmitter and a general low pass filter is used in the receiver. Consequently, we can not achieve ISI reduction but can have better spectrum characteristics. Although there is 1~2 dB performance degradation with an un-matched filter compared to that with a matched filter, it is more important to minimize adjacent channel interference in narrow band communications. The transmit signal is generated digitally to avoid the problems(I/Q imbalance and DC offset etc.) of analog modulators. In addition the digital down converter using digital IF sampling technique is adopted for the receiver. This paper contains the overall configuration, design method and simulation results based in part on the previously proposed structures and algorithms. It is confirmed that the modem transmits and receives messages successfully at a speed of max. 870 km/h over ranges of up to 310 km through the ground and in-flight communication tests.

Design of an Embedded Flash IP for USB Type-C Applications (USB Type-C 응용을 위한 Embedded Flash IP 설계)

  • Kim, Young-Hee;Lee, Da-Sol;Jin, Hongzhou;Lee, Do-Gyu;Ha, Pan-Bong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.312-320
    • /
    • 2019
  • In this paper, we design a 512Kb eFlash IP using 110nm eFlash cells. We proposed eFlash core circuit such as row driver circuit (CG/SL driver circuit), write BL driver circuit (write BL switch circuit and PBL switch select circuit), read BL switch circuit, and read BL S/A circuit which satisfy eFlash cell program, erase and read operation. In addition, instead of using a cross-coupled NMOS transistor as a conventional unit charge pump circuit, we propose a circuit boosting the gate of the 12V NMOS precharging transistor whose body is GND, so that the precharging node of the VPP unit charge pump is normally precharged to the voltage of VIN and thus the pumping current is increased in the VPP (boosted voltage) voltage generator circuit supplying the VPP voltage of 9.5V in the program mode and that of 11.5V in the erase mode. A 12V native NMOS pumping capacitor with a bigger pumping current and a smaller layout area than a PMOS pumping capacitor was used as the pumping capacitor. On the other hand, the layout area of the 512Kb eFlash memory IP designed based on the 110nm eFlash process is $933.22{\mu}m{\times}925{\mu}m(=0.8632mm^2)$.

Analysis of Customer Evaluations on the Ethical Response to Service Failures of Foodtech Serving Robots (푸드테크 서빙로봇의 서비스 실패에 대한 직업윤리적 대응에 대한 고객 평가 분석)

  • Han, Jeonghye;Choi, Younglim;Jeong, Sanghyun;Kim, Jong-Wook
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • As the service robot market grows among the food technology industry, the quality of robot service that affects consumer behavioral intentions in the restaurant industry has become important. Serving robots, which are common in restaurants, reduce employee work through order and delivery, but because they do not respond to service failures, they increase customer dissatisfaction as well as increase employee work. In order to improve the quality of service beyond the simple function of receiving and serving orders, functions of recovery effort, fairness, empathy, responsiveness, and certainty of the process after service failure, such as serving employees, are also required. Accordingly, we assumed the type of failure of restaurant serving service as two internal and external factors, and developed a serving robot with a vocational ethics module to respond with a professional ethical attitude when the restaurant serving service fails. At this time, the expression and action of the serving robot were developed by adding a failure mode reflecting failure recovery efforts and empathy to the normal service mode. And by recruiting college students, we tested whether the service robot's response to two types of service failures had a significant effect on evaluating the robot. Participants responded that they were more uncomfortable with service failures caused by other customers' mistakes than robot mistakes, and that the serving robot's professional ethical empathy and response were appropriate. In addition, unlike the robot's favorability, the evaluation of the safety of the robot had a significant difference depending on whether or not a professional ethical empathy module was installed. A professional ethical empathy response module for natural service failure recovery using generative artificial intelligence should be developed and mounted, and the domestic serving robot industry and market are expected to grow more rapidly if the Korean serving robot certification system is introduced.

Examination of Applicability of Liquefaction Potential Index to Seismic Vulnerability Evaluation of the Korean River Levees (액상화 가능 지수의 국내 하천제방 지진취약도 평가 적용성 검토)

  • Ha, Iksoo;Moon, Injong;Yun, Jungwon;Han, Jintae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.4
    • /
    • pp.31-40
    • /
    • 2017
  • In this study, a simple method to evaluate the seismic vulnerability of river levees was examined considering the structural characteristic of river levee, that is long, and the functional characteristic of river levee that performs temporary function against flood but is a permanent structure in the ordinary way. Considering the fact that one of the main failure modes of the levee during the earthquake are the settlement due to the strength reduction of the ground caused by the increase of the excess pore pressure in the levee body and foundation and the settlement due to liquefaction, the 2-dimensional section of the levee was regarded as the 1-dimensional section and the liquefaction potential index (LPI) for the regarded section was estimated. The estimated LPI was correlated with the seismic vulnerability of river levees. The relationship between the displacement of the levee crest caused by the earthquake and the seismic vulnerability of the levees was obtained from the results of previous researches and the correlation between the displacements of the levee crest computed by 2-dimensional dynamic coupled analyses and LPIs based on the results of 1-dimensional seismic response analyses was investigated. In connection with this correlation, as a result of examination of the correlation between LPI and the seismic vulnerability of the levee, it was concluded that the method for evaluation of the seismic vulnerability of the Korean river levee using LPI is applicable.

Analysis on Pool Temperature Variation along Pool Water Management System Operation in Research Reactor (연구용원자로에서 수조수관리계통 운전에 따른 수조수 온도 해석)

  • Choi, Jungwoon;Lee, Sunil;Park, Ki-Jung;Seo, KyoungWoo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.135-143
    • /
    • 2017
  • The domestic unique research reactor, HANARO (Hi-flux Advanced Neutron Application ReactOr), has been constructed with the open-pool, the core is submerged in, for the multi-purpose neutron application. The reactor has a primary cooling system to remove the fission heat from the core and its connected fluidic systems. Since the works are required at the reactor pool top as a characteristic of the research reactor, the radiation shall be minimized with the operation of the hot water layer system to avoid unnecessary radiation exposure on the workers during work at the pool top. Moreover, the pool water management system is connected to the reactor pool to maintain the pool temperature below $50^{\circ}C$ to minimize the uprising radioactive gas or impurity from the colder pool bottom. For the efficient flow rate of the PWMS, the thermal capacity of heat exchanger is selected with 260 kW in the normal operation condition. In this paper, the modeling is formulated to figure out whether or not each pool temperature maintains below the temperature limit and the calculation results show that the designed PWMS heat exchanger has enough capacity with the design margin regardless of the reactor operation mode.

Analyses of Larg Cell Area MCFC System Dynamics (대면적 용융탄산염 연료전지 시스템 동특성 분석)

  • 강병삼;고준호;이충곤;임희천
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.592-604
    • /
    • 1999
  • The steady state and dynamic characteristics of large cell area MCFC stacks were analyzed to solve the problems such as temperature difference generated in stacks and pressure difference between anode and cathode. Manipulated variables (current density, duel utilization rate, oxidant utilization rate) and controlled variables (temperature difference, anode and cathode pressure difference) which had an important effect on the MCFC stack performance were determined using operation results of two types of MCFC stacks (5kW (3,000 $\textrm{cm}^2$, 20 ea). 3kW (6,000 $\textrm{cm}^2$, 5ea)). The stability and transfer function representing system dynamics were obtained by steady state gain rate which showed the relative change between MVs and CVs. The transfer function was a 3$\times$3 matrix and a typical first order system without time delay. The optimal operating condition of large cell area MCFC stacks could be determined by analyzing dynamic characteristics. In case of a 5 kW MCFC stack, pressurized operation with recycle flow should be used to control the outlet temperature less than 68$0^{\circ}C$ and to control the MCFC system effectively. MIMO control or decoupler should be used to remove the interaction between MVs and CVs. This result will be used as important data in determining the control structure design and operation mode of large cell area MCFC systems in the future.

  • PDF