Prediction of the Successful Defibrillation using Hilbert-Huang Transform

Hilbert-Huang 변환을 이용한 제세동 성공 예측

  • Jang, Yong-Gu (Department of Biomedical Engineering, Yonsei University) ;
  • Jang, Seung-Jin (Department of Biomedical Engineering, Yonsei University) ;
  • Hwang, Sung-Oh (Department of Emergency Medicine, Wonju College of Medicine, Yonsei University) ;
  • Yoon, Young-Ro (Department of Biomedical Engineering, Yonsei University)
  • 장용구 (연세대학교 의공학과) ;
  • 장승진 (연세대학교 의공학과) ;
  • 황성오 (연세대학교 원주의과대학 응급의학교실) ;
  • 윤영로 (연세대학교 의공학과)
  • Published : 2007.09.25

Abstract

Time/frequency analysis has been extensively used in biomedical signal processing. By extracting some essential features from the electro-physiological signals, these methods are able to determine the clinical pathology mechanisms of some diseases. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. In this paper, we develop a new signal processing method using Hilbert-Huang Transform to perform analysis of the nonlinear and non-stationary ventricular fibrillation(VF). Hilbert-Huang Transform combines two major analytical theories: Empirical Mode Decomposition(EMD) and the Hilbert Transform. Hilbert-Huang Transform can be used to decompose natural data into independent Intrinsic Mode Functions using the theories of EMD. Furthermore, Hilbert-Huang Transform employs Hilbert Transform to determine instantaneous frequency and amplitude, and therefore can be used to accurately describe the local behavior of signals. This paper studied for Return Of Spontaneous Circulation(ROSC) and non-ROSC prediction performance by Support Vector Machine and three parameters(EMD-IF, EMD-FFT) extracted from ventricular fibrillation ECG waveform using Hilbert-Huang transform. On the average results of sensitivity and specificity were 87.35% and 76.88% respectively. Hilbert-Huang Transform shows that it enables us to predict the ROSC of VF more precisely.

시/주파수 분석은 생체 신호 처리에서 널리 사용되어왔다. 전기 생리학적 신호로부터 중요한 특징들을 추출함으로써 이 방법들은 특정 질병의 임상 병리학적 기전 해석이 가능하다. 하지만 이 방법은 신호가 안정하다는 가정 아래 적용되었으며 불안정한 시스템에서의 적용은 제한이 되어 있다. 본 연구에서는 비선형적이고 비정상적인 심실세동 심전도 파형의 분석을 위해 Hilbert-Huang 변환을 사용한 새로운 신호처리 방법을 제안하였다. Hilbert-Huang 변환은 경험모드분리법(EMD)과 힐버트 변환으로 크게 두 가지로 구성된다. Hilbert-Huang 변환은 EMD를 사용하여 각각의 특성을 지니고 있는 독립적인 내부모드함수들로 나누어지며, 힐버트 변환에 의해 순간 주파수와 크기를 구할 수 있게 된다. 이런 특성으로 신호의 국부적인 작용에 대하여 정확하게 설명할 수 있게 된다. 본 연구에서는 Hilbert-Huang 변환을 기반으로 심실세동 심전도 파형으로부터 두 종류의 파라미터(EMD-IF, EMD-FFT)를 추출하고 서포트 벡터 머신(Support Vector Machine)을 이용하여 소생성공 및 실패 여부 예측에 관하여 연구하였다. 평균적으로 민감도와 특이도는 각각 87.57%와 76.92%로 나타났다. Hilbert-Huang 변환은 더욱 정확하게 심실세동에서의 소생성공 예측을 가능하게 하였다.

Keywords

References

  1. G. K. Moe, J. A. Abildskov, and J. Han, 'Factors responsible for the initiation and maintenance of ventricular fibrillation in Sudden Cardiac Death', B. S. Surawicz and E. D. Pellegrino, Eds. New York: Grune & Stration, p.56, 1964
  2. B. Surawicz, H. Uhley, R. Borun, M. Laks, L. Crevasse, K. Rosen, W. Nelson, W. Mandel, P. Lawrence, L. Jackson, N. Flowers, J. Clifton, J. Greenfield, Jr., and E. O. De Medina, 'The quest for optimal electrocardiography, Task Force 1: Standardization of terminology and interpretation', Amer. J. Cardiol., Vol. 41, pp.130-145, 1978 https://doi.org/10.1016/0002-9149(78)90147-9
  3. Larsen MP, Eisenberg MS, Cummins RO and Hallstrom AP., 'Predicting survival from out-of-hospital cardiac arrest: a graphic model', Ann Emerg Med., Vol. 22, pp.1652-1658, 1993 https://doi.org/10.1016/S0196-0644(05)81302-2
  4. Strohmenger H. U. and Volker W., 'Electrocardiographic prediction of cardiopulmonary resuscitation success', Current Opinion in Critical Care, Vol. 6, No. 3, pp.192-195, 2000 https://doi.org/10.1097/00075198-200006000-00009
  5. Amann A., Rheinberger K. and Achleitner U., 'Algorithms to analyze ventricular fibrillation signals', Curr Opin Crit Care, Jun, Vol. 7, No. 3, pp.152-156, 2001 https://doi.org/10.1097/00075198-200106000-00003
  6. Clifton W. Callaway and James J. Menegazzi, 'Waveform analysis of ventricular fibrillation to predict defibrillation', Curr Opin Crit Care. Jun, Vol. 11, No. 3, pp.192-199, 2005 https://doi.org/10.1097/01.ccx.0000161725.71211.42
  7. W. D. Weaver, L. A. Cobb, D. Dennis, R. Roberta, H. P. Alfred, and C. K. Copass, 'Amplitude of ventricular fibrillation waveform and outcome after cardiac arrest', Ann. Intern. Med., Vol. 102, pp.53-55, 1985 https://doi.org/10.7326/0003-4819-102-1-53
  8. L. Morkrid, O. J. Ohm, and H. Engedal, 'Time domain and spectral analysis of electrograms in man during ventricular activity and ventrilcular activation', IEEE Trans. Biomed. Eng. Vol. BME-31, pp.350-355, 1984 https://doi.org/10.1109/TBME.1984.325345
  9. J. N. Herbschleb, I. van derTweel, and F. L. Meijler, 'The apparent repetition frequency of ventricular fibrillation', Proc. IEEE Comput. Cardiol., pp.249-252, 1982
  10. E. J. F. Carlisle, J. D. Allen, A. Bailey, W. G. Kernohan, J. Anderson, and A. A. J. Adgey, 'Fourier analysis of ventricular fibrillation and synchronization of DC countershocks in defibrillation', J. Electrocardiol., Vol. 21, pp.337-343, 1988 https://doi.org/10.1016/0022-0736(88)90110-0
  11. G. Martin, J. Cosin, M. Such, A. Hernandez, and P. Llamas, 'Relation between power spectrum time course during ventricular fibrillation and electromechanical dissociation, effects of coronary perfusion and nifedipine', European Heart J., Vol. 7, pp.560-569, 1986 https://doi.org/10.1093/oxfordjournals.eurheartj.a062106
  12. R. Dzwonczyk, C. G. Brown, and H. A. Werma, 'The median frequency of the ECG during ventricular fibrillation: Its use in an algorithm for estimating the duration of cardiac arrest', IEEE Trans. Biomed. Eng., Vol. 37, pp.640-645, 1990 https://doi.org/10.1109/10.55668
  13. N. E. Huang et al, 'The empirical mode decomposition and the Hilbert spectrum for non-linear and non stationary time series analysis', Proc. Royal Soc. London A, Vol. 454, pp.903-995, 1998 https://doi.org/10.1098/rspa.1998.0193
  14. Huang N. E. Z. Shen and S. R. Long, 'A new view of nonlinear water waves: the Hilbert spectrum', Annual Review of Fluid Mechanics, Vol. 31, pp.417-457, 1999 https://doi.org/10.1146/annurev.fluid.31.1.417
  15. Wei Huang, Z. Shen, N. E. Huang and Cheng Fung., 'Engineering analysis of biological variables: an example of blood pressure over 1 day', Proceeding of the National Academy of Science of the United States of America, Vol. 95, No. 9, pp.4816-4821, 1998 https://doi.org/10.1073/pnas.95.9.4816
  16. Jaideva C. Goswami and Albert E. Hoefel, 'Algorithm for estimating instantaneous frequency', Elsevier Signal Processing, Vol. 84, pp.1423-1427, 2004 https://doi.org/10.1016/j.sigpro.2004.05.016
  17. Kuelz Kw, Hsia PW, Wise RM, Mahmud R, Damiano RJ, 'Integration of absolute ventricular fibrillation voltage correlates with successful defibrillation', IEEE Trans Biomed Eng, Vol. 41, pp.782-791, 1994 https://doi.org/10.1109/10.310093
  18. Wik L, Hansen TB, Fylling F, Steen T, Vaagnes P, Auested BH and Steen PA, 'Delaying defebrillation to give basic cardiopulmonary resuscitation to patients with out-of-hospital ventricular fibrillation', JAMA, Vol. 289, No. 11, pp.1389-1395, 2003 https://doi.org/10.1001/jama.289.11.1389
  19. Chih-Wei Hsu, Chih-Chung Chang, and Chin-Jen Lin, 'A practical guide to support vector classification', Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf, 2004
  20. Chih-Chung Chang, and Chih-Jen Lin, 'LIBSVM : a library for support vector machines', Software available at http://www. csie.ntu.edu.tw/~cjlin/libsvm, 2001
  21. Callaham M, Braun O, Valentine W, et al, 'Prehospital cardiac arrest treated by urban first-responders: profile of patient response and prediction of outcome by ventricular fibrillation waveform', Ann Emerg Med, Vol. 22, pp.1664-1677, 1993 https://doi.org/10.1016/S0196-0644(05)81304-6
  22. Eftestol T, Sunde K, Aase SO, et al, 'Predicting outcome of defibrillation by spectral characterization and nonparametric classification of ventricular fibrillation in patients with out-of-hospital cardiac arrest', Circulation, Vol. 102, pp.1523-1529, 2000 https://doi.org/10.1161/01.CIR.102.13.1523
  23. Brown CG, Dzwonczyk R, 'Signal analysis of the human electrocardiogram during ventricular fibrillation: frequency and amplitude parameters as predictors of successful countershock', Ann Emerg Med, Vol. 27, pp.184-188, 1996 https://doi.org/10.1016/S0196-0644(96)70346-3
  24. Burges, C. J. C., 'A tutorial on support vector machine for pattern recognition', Data Mining and Knowledge Discovery, Vol. 2, pp.121-167, 1998 https://doi.org/10.1023/A:1009715923555