• Title/Summary/Keyword: 정밀스테이지

Search Result 272, Processing Time 0.058 seconds

The Control and Motion Characteristics of 5 axis Vacuum Stage for Electron Beam Lithography (전자빔 가공기용 진공 5축 스테이지의 제어 및 운동특성)

  • 이찬홍;박천홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.890-893
    • /
    • 2004
  • The ultra precision machining in industrial field are increased day by day. The diamond turning has been used generally, but now is faced with limitation of use, because of higher requirement of production field. The electron beam lithography is alternative in machining area as semiconductor production. For EB lithography, 5 axis vacuum stage is required to duplicate small and large patterns on wafer. The stage is composed of 2 rotational axis and 3 translational axis with 5 DC servo motors. The positioning repeatability and resolution of Z axis feed unit are 3.21$\mu$m and 0.5 $\mu$m/step enough to apply to lithography.

  • PDF

Kinematics and Dynamics Analysis of Precision stage (정밀 스테이지의 기구 동역학 해석)

  • Ju, Jae-Hwan;Yim, Hong-Jae;Jang, Si-Youl;Jung, Jae-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.677-682
    • /
    • 2007
  • Recently, a precision stage is widely used in the fields of the nano technology. In this paper, the precision stage which consists of linear motor, vision system, light source system and controller, is designed and developed for nano imprint machine. Stiffness design considering resonance frequency is important for the precision stage. A virtual machine simulation is useful for machine development the early design stage. Kinematic and dynamic simulations of XYZ stage are performed. To consider the resonance frequency and vibration effects flexible multibody dynamics are utilized with FE modeling of the structural components.

  • PDF

Design and Modeling of a 3-DOF Precision Stage for Vibration Isolation (제진을 위한 3 자유도 정밀 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Kim, Hwa-Soo;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.124-133
    • /
    • 2007
  • Active vibration isolation systems need the following performance specifications which are different from those of existing positioning systems: usage of seismic sensors, strict suppression of phase lead/lag in signal processing for sensors and actuators, excellent control in low frequency range and so on. In consideration of such specifications, a 3-DOF precision stage for vibration isolation is designed and modeled based on the physical characteristics. Then the major parameters such as spring constants and damping coefficients are valued by the system identification method using empirical transfer function. Finite element analysis is used as a verification and simulation tool throughout this research. This paper lays the foundation for the future research on the control of the active vibration isolation system.

The Design of Sliding Mode Controller for Precision Stage using Genetic Algolithm (유전자 알고리즘을 이용한 정밀 스테이지의 슬라이딩모드 제어기 설계에 관한 연구)

  • Cho, Baek-Hee;Seong, Hwal-Gyeong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.101-107
    • /
    • 2010
  • This paper presents motion control of the precision stage composed of the piezoelectric actuator and flexible hinges. The stage shows approximately 27% overshoot when the stage was applied to 30V square wave input voltage. Also, the stage shows nonlinear response characteristics including hysteresis. This paper proposes feedback control technique to suppress the phenomenon of hysteresis and overshoot using the sliding mode control scheme with the integrator. Also, this paper suggests the method that searches important parameters of sliding mode control and observer using Genetic Algorithm. To demonstrate the effectiveness of the proposed control algorithm, experimental validations are performed.

Ultra precision positioning system for Servo Motor-Piezo actualtor using dual servo loop (이중서보제어루프를 통한 서보모터-압전구동기의 초정밀위치결정 시스템)

  • 이동성;박종호;박희재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.437-441
    • /
    • 1995
  • In this paper, the ultra precision positioning system for servo motor and piezo actuator using dual servo loop control has been developed. For positioning system having long distance with ultra precision, the combination of global stage and micro stage is required. Servo moter and ball screw are used as a master stage and piezo acuator as a fine stage. By using this system, an positional precision witin .+-. 30nm has been achieved at dual servo loop control. When using micro stage, an positional precision within .+-. 10nm has been achieved. This result can be applied to develop semiconductor equipment such as wafer stepper.

  • PDF

Six D.O.F Ultra Fine Stage using Electromagnetic Force Control (전자기력 제어를 이용한 6 자유도 초정밀 스테이지)

  • 정광석;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.158-164
    • /
    • 2000
  • In recent year, desire and request fer micro automation are growing rapidly covering the whole range of the industry. This has been caused mainly by request of more accurate manufacturing process due to a higher density of integrated circuits in semiconductor industry. This paper presents a six d.o.f fine motion stage using magnetic levitation technique, which is one of actuating techniques that have the potential for achieving such a micro motion. There is no limit in motion resolution theoretically that the magnetically levitated part over a fixed stator can realize. In addition, it Is possible to manipulate the position and the force of the moving part at the same time. Then, the magnetic levitation technique is chosen into the actuating method. However, we discuss issues of design, kinematics, dynamics, and control of the proposed system. And a few experimental results fur step input are given.

  • PDF

Development of a 3-axis fine positioning stage : Part 1. Design and Fabrication (초정밀 3축 이송 스테이지의 개발 : 1. 설계 및 제작)

  • Kang, Joong-Ok;Seo, Mun-Hoon;Baek, Seok;Han, Chang-Soo;Hong, Sung-Wook
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.648-651
    • /
    • 2003
  • This paper presents a 3-axis fine positioning stage. All the procedure concerning the design and fabrication of the stae are described. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. A special flexure hinge is adopted to be able to actuate the single stage in three axes at the same time. A ball contact mechanism is introduced into the piezoelectric actuator to avoid the cross talk among the axes. The final design is obtained with the theoretical analysis on the stage. An actual fine stage is developed and the design specifications are verified through an experiment.

  • PDF

Design and Modeling of a 6-dof Stage for Ultra-Precision Positioning (초정밀 구동을 위한 6 자유도 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Park, Jong-Ho;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.106-113
    • /
    • 2009
  • A 6-DOF precision stage was developed based on parallel kinematics structure with flexure hinges to eliminate backlash, stick-slip and friction and to minimize parasitic motion coupled with motions in the other-axis directions. For the stage, lever linkage mechanism was devised to reduce the height of system for the enhancement of horizontal stiffness. Frequency response comparison between experimental results and mathematical model extracted from dynamics of the stage was performed to identify the system parameters such as spring constants and damping coefficients of actuation modules, which cannot be calculated accurately by analytic methods owing to their complicated structures. This newly developed precision stage and its identified model will be very useful for precision positioning and control because of its high accuracy and non-coupled movement.

Design, Modeling and Analysis of a 3-axis Fine Positioning Stage (초정밀 3축 이송 스테이지의 설계, 모델링 및 해석)

  • 강중옥;서문훈;한창수;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.989-992
    • /
    • 2002
  • This paper presents a procedure far design, modeling and analysis of a fine positioning stage. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. Through a series of analysis, the structural analysis model is simplified as a rigid body(the moving part) and springs (the flexure hinges). An experimental design procedure is applied to determine optimum design variables for flexure hinges. The optimum variables are validated through a numerical test. A sensitivity analysis on the notch positions is also performed to obtain a guideline of fabrication accuracy for the stage.

  • PDF

Design of a 6-DOF Stage for Precision Positioning and Large Force Generation (정밀 위치 결정 및 고하중 부담 능력을 지닌 6-자유도 스테이지의 설계)

  • Shin, Hyun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.105-112
    • /
    • 2013
  • This paper presents the structural design and finite element analysis of precision stage based on a double triangular parallel mechanism for precision positioning and large force generation. Recently, with the acceleration of miniaturization in mobile appliances, the demand for precision aligning and bonding has been increasing. Such processes require both high precision and large force generation, which are difficult to obtain simultaneously. This study aimed at constructing a precision stage that has high precision, long stroke, and large force generation. Actuators were tactically placed and flexure hinges were carefully designed by optimization process to constitute a parallel mechanism with a double triangular configuration. The three actuators in the inner triangle function as an in-plane positioner, whereas the three actuators in the outer triangle as an out-of-plane positioner. Finite element analysis is performed to validate load carrying performances of the developed precision stage.