• Title/Summary/Keyword: 접합부 상세

Search Result 185, Processing Time 0.026 seconds

Cyclic-Leading Tests of RC Exterior Beam-Column Joints with Non-Seismic Detailing (비내진 상세를 가진 RC 외부접합부의 반복 횡하중 실험)

  • Cha, Byung-Gi;Ko, Dong-Woo;Woo, Sung-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • The objective of this study is to clarify the seismic capacity and the characteristics in the hysteretic behavior of RC structures with non-seismic detailing. To do this, an exterior beam-column subassemblage was selected from a ten story RC building and six 1/3-scale specimens were manufactured with three variables; (1) with and without slab, (2) upward and downward direction of anchorage for the bottom bar in beams, and (3) with and without hoop bars in the joint region. The test results have shown that (1) the existence of slab increased the strength in positive and negative moment, 25% and 52%, respectively; (2) the Korean practice of anchorage (downward and 25 $d_{b}$ anchorage length) caused the 8% reduction of strength and the early strength degradation in comparison with the case of seismic details; and (3) the existence of hoop bars in the joint region shows significant role in preventing the pull-out.t.

An Analytical Study for the Stair Joints Constructed with Prefabricated Form System (선시공 조립식 거푸집 공법을 이용한 계단 접합부의 접합방식에 따른 해석적 연구)

  • Lee, Eun-Jin;Jin, Byung-Chang;Chang, Kug-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-304
    • /
    • 2008
  • The stair joints constructed with prefabricated system are general method doing structure design at hinge. If you regarded joints to come in contact with a flight of stairs and a slope of stairs as hinge, the moment performance of joints is not in the least moment, so as the bending moment of the stair case is increased, the reinforcement increase. Also the use is decreased because increasing the joint damage of the vibration & fatigue load. No less the reason constructed with pin the stair joints because the construction efficiency of field work is useable. Recently, they are considering the construction efficiency, while the semi-rigid detail for bending performance of joints is proposed, but for now they don't reflect the detail. Therefore, we proposed that reflecting the method at design semi-rigid joints. We compared the moment performance with the stair joints designed at the rigid joints, semi-rigid joints and pin joints. The nonlinear behavior of staircase core statically indeterminate structure. The result of research is that a bending stiffness modulus bring to reflect the semi-rigid performance, the performance of the semi-rigid joint is better than pin joints, and that is judged the system better seismic and vibration performance because have excellent ductility more than rigid joint.

  • PDF

Seismic Resistance of Concrete-filled U-shaped Steel Beam-to-RC Column Connections (콘크리트채움 U형 강재보 - 콘크리트 기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Cheol-Ho;Park, Chang-Hee;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.1
    • /
    • pp.83-97
    • /
    • 2011
  • In this study, the seismic details of a concrete-encased, U-shaped steel beam-to-RC column connection were developed. Three specimens of the beam-to-column connection were tested under cyclic loading to evaluate the seismic performance of the connection. The test parameters were the beam depth and the column section shape. The depths of the composite beams were 610 and 710 mm, including the slab depth. For the RC columns, a square section and a circular section were used. Special details using diagonal re-bars and exterior diaphragm plates were used to strengthen the connections with the rectangular and circular columns, respectively. The test results showed that the specimens exhibited good strength, deformation, and energy dissipation capacities. The deformation capacity exceeded 4% interstory drift angle, which is the requirement for the Special Moment Frame.

Experimental Study on the Tensile Behaviors of Stud Connection with Hanger (행거로 보강된 스터드 접합부의 인장거동에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the tensile behavior of the stud connection between reinforced concrete(RC) and steel members. Hanger reinforcements are placed around the studs to transfer the tensile and flexural loads to the opposite side of the concrete member. Eight specimens for the tensile tests are tested with variables, which are the arrangement details of hanger reinforcements, the reinforcing bars, and the embedment length of stud. The results of the tensile tests show that hanger reinforcements are effective to increase tensile strength for stud connections. Hangers and reinforcing bars near stud bolts contributed to the reduction of brittle failure. From the evaluation on the tensile strength by previous design guidelines, it was shown that CCD (Concrete Capacity Design) method was more suitable for estimation of test strength.

Determination of Key Influence Parameters on RC Joint Shear Behavior Using the Bayesian Parameter Estimation (Bayesian parameter estimation을 적용한 RC 접합부 전단거동의 주요영향 요인 결정)

  • Kim, Jae-Hong;Yang, Jong-Ho;Im, Duk-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.328-331
    • /
    • 2011
  • 준정적 횡하중을 재하 받는 철근콘크리트 보-기둥 접합부의 전단강도에 대한 주요 영향요인을 Bayesian parameter estimation의 신뢰성 이론 접목을 통해 검토하였다. 이와 같은 연구 scope의 수행을 위해 철근콘크리트 보-기둥의 실험 database가 구축되었다. 실험 database는 일정한 criteria을 적용하여 구축되었으며, 포함된 시편들은 최종적으로 접합부 내의 전단파괴가 지배하는 경우들이다. 포함된 시편들의 상세는 ACI (American Concrete Institute) 352R-02를 기준으로 평가되어졌다. 보-기둥 접합부의 전단강도에 영향 요인을 편중되지 않게 평가하고자, Bayesian parameter estimation의 신뢰성 이론을 적용하였다. Bayesian parameter estimation의 적용을 통해 전단강도에 영향이 적은 변수 (not informative parameter)를 순차적으로 제거 (stepwise removal process)함으로 주요 영향요인의 우선 순위를 확인할 수 있었다. 검토된 8개의 변수들 중에서, 횡하중을 재하 받는 철근콘크리트 보-기둥의 전단강도는 주로 콘크리트 압축강도, in-plane geometry, 종방향 보의 주철근 그리고 접합부 내의 구속철근 순으로 영향을 줌을 알 수 있었다.

  • PDF

Test and Analysis on the Transverse Gusset Plate Connection to Circular Hollow Section(CHS) of High Strength (고강도 원형강관의 직각방향 거셋플레이트 접합부 실험 및 해석)

  • Lee, Swoo-Heon;Shin, Kyung-Jae;Lee, Hee-Du;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.163-173
    • /
    • 2012
  • A connection composed of a circular hollow structural section (HSS) has complicated details, and exhibits a very complex local deformation when it reaches the yield stress. Given these circumstances, proposing a simple design equation considering local deformation is difficult. The design equations of the Korea Building Code (KBC 2009) for HSS joints are simple and are very similar to those of the AISC. These design equations limit the maximum yield stress up to 360MPa and yield ratio (yield strength/tensile strength) up to 0.8. This means that the material with yield strength exceeding 360MPa could be used after verification based on the test or rational analysis for the similar connection. This paper introduces an experimental program and finite element analysis (FEA) for the circular hollow section (CHS) with a transverse gusset plate made of high-strength steel (HSB600) or structural steel (SS400) when the joints are subjected to lateral force. Comparison of the design equations with the results of FEA and test may be used for the modification of the design equations.

Seismic Retrofit Design of RHS Column-to-H Beam Connections (RHS 기둥-H형강보 접합부의 내진보강 설계)

  • Kim, Young Ju;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.529-537
    • /
    • 2008
  • The objective of this paper is to propose retrofit design methods of theRHS column-to-H beam connections with floor slabs. Referring to previous studies on the retrofitting of moment connections, it is clear that connections retrofitted with a stiffened RBS (SR) or a lengthened horizontal stiffener (LH) has an effect on decreasing the stress/strain concentration. A new design procedure using these two retrofitting methods was thus presented. In addition, this paper addressed various design or detailing options and recommended a procedure for designing the improved retrofitting method of steel moment connections. Finally, a pilot test was conducted to verify the design procedure.

Slab Effect on Inelastic Behaviors of High Strength RC Beam-Column Joints (고강도 RC 보-기둥 접합부의 비탄성 거동에 대한 슬래브의 영향)

  • 장극관;김윤일;오영훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.167-177
    • /
    • 1997
  • In thtx design of ductile moment -1csist1ng frnmcls (DMRFs) f'ollow~ng the. stlong columnweakbeam design philosophy, it is desirable that the joint and column remain essentiallyelastic in order to insure proper energy dissipation and lateral stability of the structure.Thv joint has been identifid as the "weak link: in DMRFs because any stiffness orstrength deterioration in this region can lead to substantial drifts and the possibility ofcollapse due to t'-delta effects. h3oreove1.. the tngintw is faced with the difficult task ofdetailing an element whose size is determined by theframing members, but \vhich mustresist a set of loads very different from those used in the design of the beams and columns.Four 3 -scale beam-column-slab joint assemblies were designed according to existing cod\ulcornerrequirements of' ACI 318-89. representing perimeter joints of DMRFs with reinforced highstrength concrete. The influence on aseismic behavior of beam-column joints due tomonolithic slab, has been investigated.lab, has been investigated.

A Development of Prototype Design Automation System for Standard Connections Using High-Strength Bolts based on BIM (BIM 기반의 고력볼트 마찰접합부 설계자동화 시스템의 프로토타입 구축)

  • Eom, Jin-Up;Shin, Tae-Song
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.637-646
    • /
    • 2011
  • This study is related to the development of a design automation system for the construction design phase of steel structures. The system intended for beam splice friction connections using high-strength bolts. The standard design method and standardization principles that are suggested in the design manual for standard connections using high-strength bolts published by the Korean Society of Steel Construction(KSSC) were reviewed. A structural analysis algorithm was formulated from the review. A design automation system that can automatically calculate the structural design of connections and automatically generate the connection model without separate inputs was developed. To verify the validity of the developed system, its results were compared with the date in the table for the connection design in the Design Manual. The development system was also applied to the sample model. Then the structural design results were compared with the properties of the connection models and drawings created from the results.