• 제목/요약/키워드: 접촉면 요소

검색결과 193건 처리시간 0.028초

Applications of Interface Elements to Contact Problems in Reinforced Concrete Structures (경계면 요소를 이용한 철근콘크리트 접촉면의 응력해석)

  • 최완철;정일영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.90-96
    • /
    • 1992
  • 경계면 요소를 이용하여 철근콘크리트 구조물의 접촉면 문제를 유한 요소법으로 해석하는 기법에 대하여 연구한다. 본 연구에서는 경계면 요소의 수치해석의 이론과정을 전개하고, 실험 관찰된 부착 시험체에 적용하여 이형철근과 콘크리트 부착기구의 접촉면을 해석한다. 경계면은 특별한 연결요소를 이용하여 재현하며 Mohr-Coulomb의 마찰 이론을 응응한다. 해석의 주요점으로 하중상태에 따라 변화되는 경계면의 접촉상태, 즉 고정(stick), 미끄러짐(slide), 분리(separation)를 묘사하여 경계면 재료의 비선형 거동을 관찰한다. 부착모델의 해석결과는 실험실의 결과와 대체로 일치되며 따라서 철근콘크리트 접촉면의 응력해석을 위해 경계면 요소가 활용될 수 있음을 보여준다.

  • PDF

An Efficient Contact Detection Algorithm for Contact Problems with the Boundary Element Method (경계요소법을 이용한 접촉해석의 효율적인 접촉면 검출기법)

  • Kim, Moon-Kyum;Yun, Ik-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제22권5호
    • /
    • pp.439-444
    • /
    • 2009
  • This paper presents an efficient contact detection algorithm for the plane elastostatic contact problem of the boundary element method(BEM). The data structures of the boundary element method are dissected to develop an efficient contact detection algorithm. This algorithm is consists of three parts as global searching, local searching and contact relation setting to reflect the corner node problem. Contact master and slave type elements are used in global searching step and quad-tree is selected as the spatial decomposition method in local searching step. To set up contact relation equations, global contact searching is conducted at node level and local searching is performed at element level. To verify the efficiency of the proposed contact detection algorithm of BEM, numerical example is presented.

Surface roughness crushing effect on shear behavior using PFC (PFC를 이용한 평면 파쇄가 전단 거동에 미치는 효과)

  • Kim, Eun-Kyung;Jeong, Da-Woon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제14권4호
    • /
    • pp.321-336
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness crushing on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. Particle shape was classified into one ball model of circular shape and 3 ball model of triangular shape. The surface shape was modelled by wall model of non-crushing surface and ball model of crushing surface. The results showed that as the bonding strength of ball model decreases, lower interface strength is induced. After the surface roughness crushing was occurred, the interface strength tended to converge and higher bonding strength induced lower surface roughness crushing. Higher friction angle was induced in wall model and higher surface roughness induced the higher friction angle. From these findings, it is verified that the surface roughness and surface roughness crushing effect on the particle/surface interface shear behavior.

The Characteristics of Dynamic Behaviors for Geosynthetic-soil Interface Considering Chemical Influence Factors (화학적 영향인자를 고려한 토목섬유-흙 접촉면 동적거동 특성)

  • Park, Innjoon;Kwak, Changwon;Kim, Jaekeun
    • Journal of the Korean GEO-environmental Society
    • /
    • 제11권11호
    • /
    • pp.47-54
    • /
    • 2010
  • Nowadays, geosynthetics for reinforcement and protection are widely applied to the waste landfill site. Current research indicates the potential for progressive failure in geosynthetic-soil system depends on the interface shear strength governed by several intrinsic factors such as moisture, normal stress, chemical, etc. In particular, the effect of the acidity and basicity from the leachate is intensively reviewed to assess the chemical reaction mechanism of interface shear strength under the cyclic loading condition. New multi-purpose interface apparatus(M-PIA) has been manufactured and the cyclic direct shear tests using submerged geosynthetics and soils under the different chemical conditions have been performed, consequently, the thickness of interface and shear stress degradation are verified. The basic schematic of the Disturbed State Concept(DSC) is employed to estimate the shear stress degradation in the interface, then, normalized disturbed function is obtained and analyzed to describe the shear stress degradation of geosynthetic-soil interface with chemical influence factors under dynamic condition.

Study of Computing Nodal Thermal Contact Conductance between 3 Dimensional Unmatched Grid Interfaces for Finite Element Thermal Analysis (유한요소 열해석의 3차원 불일치격자경계면의 절점 접촉열교환계수 계산 연구)

  • Kim, Min Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제45권12호
    • /
    • pp.1021-1030
    • /
    • 2017
  • This paper describes the algorithm of computing thermal contact conductance between unmatched grid interfaces for finite element thermal analysis. Because grid interfaces should be coincident with adjacent meshes for finite element method, large amount of man hours and huge computations are required to match interfaces between many numbers of complex subdomains. A novel method that distributes feasibly the conductances to interface nodes is proposed. The aims of the method are described, and details of the nodal conductance distribution algorithm with less dependency on meshes are represented. The algorithm can be applied both the flat and curved interfaces in 3 dimensional space, and proposed method can combined with many finite element application including thermal analysis.

Computational Efficiency of Thermo-Elasto-Viscoplastic Damage and Contact Analyses by Domain/Boundary Decomposition Method (영역/경계 분할법에 의한 열탄점소성 손상 및 접촉 해석의 효율화)

  • Shin, Eui-Sup;Kim, Sung-Jun;Kim, Jong-Il;Seo, Young-Su
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.43-46
    • /
    • 2009
  • 열탄성 부영역, 열탄점소성/손상 부영역, 공유면, 접촉 공유면에 기반을 둔 영역/경계 분할법을 적용하여 재료 비선형성을 갖는 열탄점소성 손상 문제와 경계 비선형성을 갖는 접촉 문제의 효율적인 해석을 제안하였다. 영역 및 경계 분할에 관련된 공유면 및 접촉 공유면에서의 연속 구속 조건을 처리하기 위하여 간단한 벌칙 함수 기법을 적용하였다. 결과적으로 재료 및 경계 비선형성은 소수의 부영역과 접촉 경계면에서 계산되는 유한요소 행렬들에 국한된다. 따라서 적절한 해석 알고리듬을 구성하면 대폭적인 효율성 향상이 가능하게 된다. 대변형과 같은 기하학적 비선형성은 고려하지 않았으며, 간단한 수치 실험을 통해서 열탄점소성 손상 및 접촉 해석의 효율성에 관련된 기본적인 특성을 분석하였다.

  • PDF

Structural Behavior of Composite Basement Wall According to Shear Span-to-Depth Ratio and FE Analysis Considering the Condition of Contact Surface (전단경간비에 따른 합성지하벽의 거동과 접촉면의 조건을 고려한 유한요소 해석)

  • Seo, Soo Yeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제15권6호
    • /
    • pp.118-126
    • /
    • 2011
  • The objective of this paper is to study the structural behavior of Composite Basement Wall (CBW) according to shear span-to-depth ratio through an experiment and predict the nonlinear behavior of CBW by using ADINA program widely has been being used for FE analysis. Especially, this study focuses on the part of CBW in which the Reinforced Concrete (RC) is under compression stress; At the region of CBW around each floor, RC part stresses by compressive force when lateral press by soil acts on the wall. The contact condition between RC wall and steel (H-Pile) including stud connector is main factor in the analysis since it governs overall structural behavior. In order to understand the structural behavior of CBW whose RC part is under compressive stress, an experimental work and finite element analysis were performed. Main parameter in the test is shear span-to-depth ratio. For simplicity in analysis, reinforcements were not modeled as a seperated element but idealized as smeared to concrete. All elements were modeled to have bi-linear relation of material properties. Three type of contact conditions such as All Generate Option (AGO), Same Element Group Option with Tie(SEGO-T) and Same Element Group Option with Not tie(SEGO-NT) were considered in the analysis. For each analysis, the stress flow and concentration were reviewed and analysis result was compared to test one. From the test result, CBW represented ductile behavior by contribution of steel member even if it had short shear span-to-depth ration which is close to "1". The global composite behavior of CBW whose concrete wall was under compressive stress could be predicted by using contact element in ADINA program. Especially, the modeling by using AGO and SEGO-T showed more close relation on comparing with test result.

Adaptive Domain/Boundary Decomposition Method for Computational Efficiency of Thermo-Elasto-Viscoplastic Damage and Contact Analysis (열탄점소성 손상 및 접촉 해석의 효율화를 위한 적응성 영역/경계 분할 기법)

  • Kim, Sung-Jun;Kim, Jong-Il;Shin, Eui-Sup
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.72-75
    • /
    • 2010
  • 본 논문에서는 열탄점소성 손상과 접촉 문제의 효율적인 해석을 위하여 적응성 영역/경계 분할법을 제안하였다. 적응성 영역/경계 분할법은 시간 증분 또는 반복 기법 단계에서 열탄점소성 손상과 같은 재료 비선형성을 감안하여 부영역을 재설정하며, 접촉에 따른 경계 비선형성은 경계면을 통하여 부영역으로부터 독립적으로 분할한다. 분할된 각각의 부영역과 경계면을 기준으로 유한요소 정식화를 수행하며, 공유면 및 접촉 공유면의 연속 구속 조건을 처리하기 위하여 벌칙 함수 기법을 적용하였다. 결과적으로 재료 및 경계 비선형성은 일부 부영역과 접촉 경계면에서 계산되는 유한요소 행렬에 국한된다. 수치 실험을 통하여 적응성 해석 알고리듬의 기본적인 특성과 효율성 향상에 대하여 분석하였다.

  • PDF

Computational Efficiency of 3-D Contact Analysis by Domain/Boundary Decomposition Formulation (영역/경계 분할 정식화에 의한 삼차원 접촉 해석의 효율성 검토)

  • Kim, Yong-Uhn;Ryu, Han-Yeol;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제20권4호
    • /
    • pp.469-476
    • /
    • 2007
  • A domain/boundary decomposition technique is applied to carry out efficient finite element analyses of 3-D contact problems. Appropriate penalty functions are selected for connecting an interface and contact interfaces with neighboring subdomains that satisfy continuity constraints. As a consequence, all the effective stiffness matrices have positive definiteness, and computational efficiency can be improved to a considerable degree. If necessary, any complex-shaped 3-D domain can be divided into several simple-shaped subdomains without considering the conformity of meshes along the interface. With a set of numerical examples, the basic characteristics of computational efficiency are investigated carefully.

Dynamic Contact Analysis of Composite Structures by Connecting Finite Element Subdomains (유한요소 부영역의 결합을 통한 복합재료 구조물의 동적 접촉 해석)

  • Sin, Ui Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제31권5호
    • /
    • pp.55-62
    • /
    • 2003
  • Subdomain-interface variational formulation is presented to solve a class of dynamic contact problems of composite structures. The penalty method is used for imposing inequality constraints on contact surfaces and for connecting finite element subdomains that satisfy interface compatibility conditions. As a result, any complex-shaped domain can be easily divided into independently modeled subdomains without considering the conformity of meshes on interfaces. Some advantageous features of the present method are shown through a set a numerical studies with a developed computer code.