• Title/Summary/Keyword: 접종균주

Search Result 768, Processing Time 0.042 seconds

Acid Production and Phytate Degradation using a Leuconostoc mesenteroides KC5l Strain in Saccharified-Rice Suspension (현미 당화액에서 Leuconostoc mesenteroides KC51 균주에 의한 산의 생성과 Phytate의 분해)

  • In, Man-Jin;Choi, Seo-Yeon;Kim, Hye-Rim;Park, Dan-Bi;Oh, Nam-Soon;Kim, Dong-Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.1
    • /
    • pp.33-37
    • /
    • 2009
  • A saccharified-rice was fermented using Leuconostoc(Ln.) mesenteroides KC51 strain in various dry matter (DM) contents (4%, 8%, and 12%) at $30^{\circ}C$ for 18 h. The changes of viable cell number, acid production and phytate degradation in saccharified-rice during fermentation were investigated. The viable cell population of Ln. mesenteroides KC51 was increased rapidly in proportion to DM contents during the 9 h of cultivation. The changes of pH and titratable acidity in saccharified-rice were dependent on DM contents. At high DM content (12%), the viable cell number of Ln. mesenteroides KC51 increased to 9.56 log CFU/g after 6 h of fermentation. The pH and titratable acidity reached to pH 3.38 and 0.93% after 18 h of fermentation, respectively. The phytate, known as an antinutrient factor, in saccharified-rice was degraded by Ln. mesenteroides KC51 cultivation. The decrease of phytate during fermentation approximately coincided with the increase of Ln. mesenteroides KC51 population observed in fermented saccharified-rice. Regardless of DM contents, the levels of phytate were reduced to around 50% of initial concentration.

Production of a Fermented Korean Pear Puree using a New Strain Leuconostoc mesenteroides KACC 91495P Isolated from Kimchi (김치에서 신규 Leuconostoc mesenteroides KACC 91495P 균주의 분리 및 이를 이용한 배 발효물의 제조)

  • In, Man-Jin;Kim, Hye-Min;Jin, Hea-Jin;Kim, Dong-Chung;Oh, Nam-Soon;Chae, Hee-Jeong
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.1
    • /
    • pp.51-55
    • /
    • 2010
  • A lactic acid bacterial strain showing fast growth and high acid production in Korean pear puree was isolated from Kimchi. This strain was analyzed by API 50 CHL kit and 16S rRNA sequencing analysis and identified as Leuconostoc (Ln.) mesenteroides KACC 91495P. Korean pear puree was fermented using Ln. mesenteroides KACC 91495P strain at $30^{\circ}C$ for 18 h. The changes of pH, titratable acidity and viable cell number during fermentation were investigated. The pH and titratable acidity were reached to pH 3.86 and 1.09% after 18 h fermentation, respectively. The viable cell population of Ln. mesenteroides KACC 91495P was rapidly increased to $2.0{\times}10^9\;CFU/g$ during the 9 h of cultivation. The contents of lactic acid, acetic acid and malic acid were determined to be 0.213, 0.259, and 0.217% after 18 h fermentation, respectively. The content of polyphenolic compounds, known as antioxidants, in pear puree were enhanced by Ln. mesenteroides KACC 91495P cultivation. The level of total polyphenolic compounds was increased to around 140% of initial concentration. When the fermented pear puree was kept at $4^{\circ}C$, pH, titratable acidity and number of viable cells population were nearly maintained for 13 days.

Screening of White Rot Fungi with Selective Delignification Capacity for Biopulping (백색목재부후균중 Biopulping에 이용가능한 선택적 리그닌분해균의 스크리닝)

  • Lee, Jong-Kyu;Oh, Eun-Sung
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.144-152
    • /
    • 1998
  • To obtain white rot fungi which have selective delignification capacity and can be used in biopulping processes, 94 different wood rotting fungi were screened and the capabilities of selected species were evaluated on deciduous and coniferous wood blocks. White rot fungi, first of all, were selected by simple enzyme tests, i.e., cellulase activity test; phenol oxidase activity test; laccase and peroxidase activity test. Most organisms that gave a positive Bavendamm gave a strongly positive laccase test with syringaldazine whereas most of those that gave a negative Bavendamm test also negative test for laccase and peroxidase, even if some exceptions were noted. Wood decay experiement were carried out to select fungal species with selective lignin-degrading ability by inoculating selected fungi to both wood blocks of Populus tomentiglandulosa and Larix leptolepis. After 12 weeks of incubation, weight losses, lignin losses, and morphological characteristics of the decayed wood were investigated. Almost all fungi tested caused 2 or more times of weight losses in P. tomentiglandulosa than in L. leptolepis, while no weight losses were detected from the un-inoculated wood blocks. Ceriporiopsis subvermispora and Phanerochaete chrysosporium were the best delignifiers for both hardwood and softwood. P. chrysosporium, however, was less effective than C. subvermispora. Bjerkandera adusta and two unidentified spp. caused delignification for only P. tomentiglandulosa. B. adusta caused simultaneous rot of all cell wall components, resulted in thinning of the secondary cell wall layers. Other fungi caused selective delignification resulting in the removal of lignin from middle lamella and separation of cells from each other.

  • PDF

The Biological Treatment of Soil Washing Water Contaminated with Heavy Metal (중금속오염 토양 세척수의 생물학적 처리)

  • Jeong, Jeong-Hwa;Seo, Pil-Soo;Kong, Sung-Ho;Seo, Seung-Won;Kim, Min-Kyoung;Lee, Jong-Yeol;Lee, Sang-Seob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1222-1227
    • /
    • 2006
  • In this study, nine strains were isolated from heavy metal-contaminated soil in a mine. The high efficiency bacteria, JH1, to be able removal cadmium and copper, was selected by the screen test. JH1 was identified as Ralstonia eutropha by 16S rDNA analysis, fatty acid analysis, and its morphological and biochemical characteristics. After the cadmium-contaminated soil was washed with citric acid solution(pH 6, 10 mM), Ralstonia eutropha JH1 was inoculated in the soil washing water. In order to determine the optimal cell concentration for inoculation, cell concentrations were considered in 0.5, 1.0, 2.0, 4.0 g/L, respectively. The removal efficiencies for cadmium in each cell concentration of Ralstonia eutropha JH1 were 49.9, 84.4, 89.7% and 89.9% of 110 mg/L(Cd), after 5 days culture in soil washing water. When Ralstonia eutropha JH1 was inoculated in soil washing water containing each cadmium(110 mg/L) and copper(100 mg/L), each of them was removed completely during 6 days culture. The completely removing time for cadmium and copper in each low concentration, 10, 30 and 60 mg/L were 12, 18 and 48 hrs, respectively.

Proteolytic Yeasts Isolated from Mackerel (Scomber japonicus) (고등어에서 분리된 부패성 효모)

  • OH Eun-Gyong;PARK Mi-Yeon;CHANG Dong-Suck
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.471-476
    • /
    • 1998
  • Microbiological spoilage of marine fish is complex process occurring by bacteria, yeasts and molds. There have been rare study for saprophytic yeasts although having enormous numbers of bacteriological studies on the spoilage of marine fish. The 14 genera of yeasts isolated from mackerel (Scomber japonicus) with high frequency of occurrence were Candida sp., Rhodotorula sp., Torulopsis sp., Cryptotoccus sp. and Tricosporon sp. Among these ones Candida lipolytica was identified as the strongest proteolytic yeast, then named Candida lipolytica FM5 (C. lipolytica FM5). C. lipolytica FM5 showed optimum growth at $25^{\circ}C$, pH 7.0 and could grow at $5^{\circ}C$ and in medium containing $10\%$ sodium chloride, To evaluate the saprophytic activity of the selected strain, C, lipolytica FM5 and Pseudomonas fluorescens ATCC 17571 which is one of representative spoilage bacteria were individually inoculated into the sterilized fish muscle homogenates, and then pH changes and volatile basic nitrogen (VBN) values were checked during the storage at various temperatures. According to the experimental results, the productions of VBN by C. lipolytica FM5 in the fish muscle homogenates were 50 mg-N/100 g at $5^{\circ}C$, 152 mg-N/100 g at $15^{\circ}C$ and 379 mg-N/100 g at $25^{\circ}C$ for 1 week storage, respectively. Above results were nearly same as in case of Ps. fluorescens ATCC 17571 inoculation. It suggest that sapyophytic yeasts also have important role in spoilage of marine fish.

  • PDF

Analysis of Active Ingredients Changed After Fermentation by Different Types of Bacteria for Angelica Gigas Nakai (균주 종류를 달리한 참당귀의 발효 후 유효 성분 변화)

  • Jung, Y.O.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.23 no.2
    • /
    • pp.5-14
    • /
    • 2021
  • It was investigated how the contents of four active ingredients, nodakenin, decursinol, decursin, and decursinol angerate, which are active ingredients of Angelica gigas Nakai, cause material changes depending on the type of bacteria. Fermentation experiments were conducted using 9 types of bacteria: 5 types of Bacillus EMD17, 9-3, HCD2, #8, 191 and 4 types of Lactobacillus KCTC 3320, WCP02, S65, P1201. 1. The contents of decursin and decursinol angerate, which are indicator substances, rapidly decreased after 2 days of fermentation by inoculating Bacillus bacteria in the extract of Angelica gigas Nakai. Even after 4 days of fermentation, the contents of decursin and decursinol angerate were the same as on the 2nd day. On the other hand, the content of nodakenin and decursinol increased after 4 days of fermentation. In addition, the content of decursin increased significantly after 6 days of fermentation. 2. Substance changes of nodakenin and decursinol after inoculation of Bacillus bacteria into the extract of Angelica gigas Nakai were almost non-existent regardless of the type of bacteria. The change in effective content of decursin and decursinol angerate was large in Bacillus EMD17 and 9-3. Changes in the contents of decursin and decursinol angerate were almost non-existent in Bacillus HCD2, #8, and 191 strains. 3. As a result of finding out the change in active ingredient after 8 days of fermentation using 4 types of Lactobacillus KCTC 3320, WCP02, S65, and P1201 extracts of Angelica gigas Nakai, there was almost no change in the contents of nodakenin and decursinol regardless of the type of bacteria. However, in the case of fermentation with Lactobacillus S65 and P1201, the contents of decursin and decursinol angerate were changed.

Isolation of an Acetic Acid Bacterium Acetobacter pasteurianus CK-1 and Its Fermentation Characteristics (초산균 Acetobacter pasteurianus CK-1의 분리 및 발효 특성)

  • Bang, Kyu-Ho;Kim, Chae-Won;Kim, Chul-Ho
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.119-124
    • /
    • 2022
  • To effectively isolate acetic acid bacteria for producing makgeolli vinegar, various products were researched, and Acetobacter pasteurianus CK-1, a strain that is excellent in acetic acid production, was finally isolated. The optimal growth temperature of the isolated strain was confirmed to be 30℃, and it grew well in the pH range of 5.5~6.5, with optimal growth at pH 6. A. pasteurianus CK-1 had the most active proliferation when the initial ethanol concentration in the medium was 4%, and growth was possible even at an ethanol concentration of 7%. When inoculating the isolated strain into makgeolli to induce acetic acid fermentation, the pH at the beginning of fermentation was 3.54, which was gradually lowered to 2.77 after 18 days of fermentation. The acidity was 0.75% at the beginning of fermentation and gradually started to increase from the 4th day of fermentation. The final acidity at the end of fermentation was 5.54%. In the vinegar fermented by inoculating A. pasteurianus CK-1, acetic acid content was detected to be as high as 3,575.7±48.6 mg%, and the malic acid and citric acid contents were 2,150.8±27.6 and 55.8±3.7 mg%, respectively. Further, it was confirmed that the content and ratio of the organic acids produced significantly differed depending on the type of inoculated bacterial strain. During acetic acid fermentation, the populations of yeast and A. pasteurianus CK-1 were inversely changed. In the initial stage of fermentation, yeast dominated, and after 10 days of fermentation, A. pasteurianus CK-1 slowly proliferated and reached stationary phase.

Mycelial growth of some edible mushroom isolates on the media using sawdust from the shiitake waste logs (표고 폐골목 톱밥 배지에서 몇가지 식용버섯균의 균사생장)

  • Seo, G.S.;Lee, B.S.;Lee, J.S.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.9 no.1
    • /
    • pp.33-46
    • /
    • 2007
  • We conducted this research to develop the medium for some edible mushroom cultivation using shiitake waste log which is abandoned after cultivation of shiitake mushroom because those bed logs can not be recycled. The isolates of P. ostreatus(POS-012), P. eryngii(PER-005), G. frondosa(GFR-001) and F. velutipes(FVE-001) were selected and examined for mycelial growth on sawdust media prepared from shiitake waste log. Mycelial growth of selected isolate were satisfactory on the sawdust extract media using acasia(Robinia pseudo-acacia), neutinamu(Zelkova serrata) and kangchamnamu(sangsuri, Quercus acutissima) which are no shiitake-inoculated. Although the mycelial growth of the isolate were poor on the sawdust media prepared from Quercus spp., sawdust of neutinamu, (Zelkova serrata), beotnamu, (Prunus serrulata), orinamu(Alnus japonica), eunsuweonsasinamu(Populus tomentiglandulosa) and chestnut(Castanea crenata) were excellent for mycelial growth. However, shiitake logs which are infected with harmful fungi such as Hypocrea spp. were useful as recycle materials for mushroom cultivation.

Quality characteristics of fermented soybean products produced by lactic acid bacteria isolated from traditional soybean paste (전통 장류 유래 유산균을 이용한 콩 발효물의 품질특성)

  • Lee, Sun Young;Seo, Bo Young;Eom, Jeong Seon;Choi, Hye Sun
    • Food Science and Preservation
    • /
    • v.24 no.2
    • /
    • pp.187-195
    • /
    • 2017
  • This study evaluated quality characteristics of soybean fermented by selected lactic acid bacteria, which were the enzyme strains with high antimicrobial activities isolated from traditionally prepared soybean paste. We determined total aerobic and lactic acid bacteria counts, protease and amylase activities, reducing sugar and amino-type nitrogen contents, and the amounts of amino acids, organic acids, and aroma-compounds. The total aerobic bacteria counts in soybean fermented with strain I13 ($7.75{\times}10^9CFU/mL$) were the highest among all the strains analyzed. Lactic acid bacteria numbers were $2.85{\times}10^9$ to $4.35{\times}10^9CFU/mL$ in soybean fermented with isolates. Amylase and protease activities of the JSB22 sample were the highest among all sample. Reducing sugar and amino-type nitrogen contents of soybean fermented with JSB22 (1.23%, 94.52 mg%) were highest. Total amino acid content of the samples was 15.88-17.62%, and glutamic acid, aspartic acid, leucine, lysine, and arginine were the major amino acids. Lactic acid (0.82-3.65 g/100 g), oxalic acid (22.74-63.57 mg/100 g), and fumaric acid (2.88-6.33 mg/100 g) were predominant organic acids. A total of 39 volatile aroma-compounds were identified, including 2 esters, 5 ketones, 7 alcohols, 14 hydrocarbons, 2 heterocyclic compounds, 4 acids, and 5 miscellaneous compounds. These results represent useful information for the development of a starter (single or complex) and will be used for production of functional fermented soybean foods.

Use of Thermophilic Yeast for Ethanol Fermentation of Raw Starchy Materials (생전분질원료(生澱粉質原料)의 Ethanol 발효(醱酵)에 있어서 고온성효모(高溫性酵母)의 이용(利用))

  • Park, Yoon-Joong;Sohn, Cheon-Bae;Shin, Cheol-Seung
    • Applied Biological Chemistry
    • /
    • v.27 no.4
    • /
    • pp.217-224
    • /
    • 1984
  • Effect of a thermophilic yeast (strain T-71) on the ethanol fermentation of raw starchy materials was investigated. The maximum temperature of the thermophilic yeast for the growing and fermentation was a little higher than that of ordinary yeasts and their resistance to ethanol was also high. Even though the optimum temperature of the thermophilic yeast for fermenting ethanol of several raw starchy materials was different depending upon the concentration of mashing, their optimum fermentation temperature was higher than the ordinary yeasts in all cases studied, and their fermentation efficiency was good enough to use. It was also found from the study that the period of fermentation could be shortened for about one to two days by using the thermophilic yeast.

  • PDF