DOI QR코드

DOI QR Code

Analysis of Active Ingredients Changed After Fermentation by Different Types of Bacteria for Angelica Gigas Nakai

균주 종류를 달리한 참당귀의 발효 후 유효 성분 변화

  • Jung, Y.O. (Sooy-K Bio Lab. Research and Development) ;
  • Park, N.B. (Department of Floriculture, Korea National College of Agriculture and Fisheries)
  • 정연옥 (수이케이 바이오랩) ;
  • 박노복 (국립한국농수산대학 화훼학과)
  • Received : 2021.11.04
  • Accepted : 2021.12.08
  • Published : 2021.12.28

Abstract

It was investigated how the contents of four active ingredients, nodakenin, decursinol, decursin, and decursinol angerate, which are active ingredients of Angelica gigas Nakai, cause material changes depending on the type of bacteria. Fermentation experiments were conducted using 9 types of bacteria: 5 types of Bacillus EMD17, 9-3, HCD2, #8, 191 and 4 types of Lactobacillus KCTC 3320, WCP02, S65, P1201. 1. The contents of decursin and decursinol angerate, which are indicator substances, rapidly decreased after 2 days of fermentation by inoculating Bacillus bacteria in the extract of Angelica gigas Nakai. Even after 4 days of fermentation, the contents of decursin and decursinol angerate were the same as on the 2nd day. On the other hand, the content of nodakenin and decursinol increased after 4 days of fermentation. In addition, the content of decursin increased significantly after 6 days of fermentation. 2. Substance changes of nodakenin and decursinol after inoculation of Bacillus bacteria into the extract of Angelica gigas Nakai were almost non-existent regardless of the type of bacteria. The change in effective content of decursin and decursinol angerate was large in Bacillus EMD17 and 9-3. Changes in the contents of decursin and decursinol angerate were almost non-existent in Bacillus HCD2, #8, and 191 strains. 3. As a result of finding out the change in active ingredient after 8 days of fermentation using 4 types of Lactobacillus KCTC 3320, WCP02, S65, and P1201 extracts of Angelica gigas Nakai, there was almost no change in the contents of nodakenin and decursinol regardless of the type of bacteria. However, in the case of fermentation with Lactobacillus S65 and P1201, the contents of decursin and decursinol angerate were changed.

참당귀의 유효성분인 nodakenin, decursinol, decursin, decursinol angerate 4종의 함량이 균주에 따라 어떤 물질의 변화를 일으키는지를 알아보기 위해 Bacillus EMD17, 9-3, HCD2, #8, 191 5종과 Lactobacillus KCTC 3320, WCP02, S65, P1201 4종 모두 9종류의 균주를 이용하여 발효 실험을 실시하였던 바 아래와 같은 결과를 얻었다. 1. 참당귀의 추출물에 Bacillus균을 접종하여 발효한지 2일 경과한 후부터 지표물질인 decursin과 decursinol angerate의 함량이 급격히 감소하였다. 이는 발효한지 4일이 경과한 후에도 decursin과 decursinol angerate의 함량이 2일째와 동일했다. 반면 발효한지 4일이 경과한 후에 nodakenin과 decursinol의 함량이 높아졌다. 또한 decursin의 함량은 발효한지 6일이 지난 후에는 크게 증가하였다. 2. 참당귀의 추출물에 Bacillus균을 접종 후 nodakenin과 decursinol의 물질변화는 균 종류에 관계없이 거의 나타나지 않았다. Decursin과 decursinol angerate의 유효함량 변화는 Bacillus EMD17, 9-3에서 큰 것으로 나타났다. Decursin과 decursinol angerate의 함량 변화는 Bacillus HCD2, #8, 191균주에서 거의 나타나지 않았다. 3. 참당귀의 추출물에 Lactobacillus KCTC 3320, WCP02, S65, P1201 4종류를 이용하여 발효한지 8일 후에 유효성분 변화를 알아본 결과균의 종류와 상관없이 nodakenin과 decursinol의 함량 변화는 거의 나타나지 않았다. 그러나 Lactobacillus S65, P1201로 발효를 한 경우에는 decursin과 decursinol angerate의 함량에서 변화가 나타났다.

Keywords

References

  1. 김정률, 2012, UPLC-DAD를 이용한 참당귀의 정량과 패턴분석, 서울대학교 대학원, 박사학위논문
  2. 염유정, 2021, 특이환경 유래 Bacillus sp.를 활용한 금화규(Abelmoschus manihot L.) 발효 산물의 항산화 및 항염증 효과 연구, 신라대학교 석사학위논문.
  3. Baik, M., J. H. Kim, D. W. Lee, J. S. Hwang and E. Moon. 2017. Anti-aging cosmetic application of novel multi-herbal extract composed of Nelumbo nucifera leaves, Saururus chinensis and Orostachys japonica. J. Soc. Cosmet. Sci. Korea 43(2) : p.93~102. https://doi.org/10.15230/SCSK.2017.43.2.93
  4. Cha, J. Y., Kim, H. W., Heo, J. S., Ahn, H.Y., Eom, K. E., Heo, S. J. and Cho, Y. S., 2010, Ingredients Analysis and Biological Activity of Fermented Angelica gigas Nakai by Mold. J. of Life Sci. vol. 20(9) : p.1385~1393. https://doi.org/10.5352/JLS.2010.20.9.1385
  5. Cho, S. H., Choi, Y. J., Rho, C. W., Choi, C. Y., Kim, D. S., and Cho, S. H., 2008. Reactive oxygen species and cytotoxicity of bamboo (Phyllostachys pubescens) sap. Kor. J. Food Preserv. 15 : p.105~110.
  6. Heo, J. S., Cha, J. Y., Kim, H. W., Ahn, H. Y., Eom, K. E., Heo, S. J., Cho, Y. S., 2010, Bioactive materials and biological activity in the extracts of leaf, stem mixture and root from Angelica gigas Nakai. J. Life Sci.,20 : p.750~759. https://doi.org/10.5352/JLS.2010.20.5.750
  7. Jung, S. W., N. K. Lee, S. J. Kim, and D. S. Han. 1995. Screening of tyrosinase inhibitor from plants. Korean J. Food Sci. Technol. 27 : p.891-896.
  8. Kang, S. A., Jang, K. H., Lee, J. E., Ahn, D. K. and Park, S. K. 2003. Differences of hematopoietic effects of Angelica gigas, A. sinensis and A. acutiloba extract on cyclophosphamide-induced anemic rats. Kor. J. Food Sci. Technol. 35 : p.1204~1208.
  9. Kim, C. H., Kwon, M. C., Han, H. G., Na, C. S., Kwak, H. G., Choi, G. P., Park, U. Y. and Lee, H. Y., 2008. Skin-whitening and UV-protective effects of Angelica gigas Nakai extracts on ultra high pressure extraction process. Korean J. Medicinal Crop Sci. 16(4) : p.255~260.
  10. Kim, E. Y., Baik, I. H., Kim, J. H., Kim, S. R., and Rhyu, M. R., 2004. Screening of the antioxidant activity of some medicinal plants. Korean J. Food Sci. Technol. 36 : p.333~338.
  11. Kim, K. M., Jung, J. Y., Hwang, S. W., Kim, M. J., Kang, J. S., 2009, Isolation and purification of decursin and decusinol angelate in Angelica gigas Nakai. J. Korean Soc. Food Sci. Nutr., 38 : p.653~656, https://doi.org/10.3746/JKFN.2009.38.5.653
  12. Kim, N. S., Jung, D. H., Jung, C. R., Kim, H. J., Jeon, K. S. and Park, H. W., 2019, Comparison of Growth and Contents of Active Ingredients of Angelica gigas Nakai under Different Cultivation Areas. Korean J. Plant Res. 32(5) : p.448~456.
  13. Kim, S. Y., C. R. Kim, H. M. Kim, M. Kong, J. H. Lee, H. J. Lee, M. S. Lim, N. R. Jo and S. N, Park. 2010b. Antioxidant activity and whitening effect of Cedrela sinensis A. Juss shoots extracts. J. Soc. Cosmet. Sci. Korea 36(3) : p.175~182.
  14. Lee, H. J. and S. N. Park. 2011. Antioxidative effect and active component analysis of Quercus salicina Blume extracts. J. Soc. Cosmet. Sci. Korea 37(2) : p.143~152. https://doi.org/10.15230/SCSK.2011.37.2.143
  15. Lee, S. H., Kang, S. S., Shin, K. H., 2002, Coumarins and a pyrimidine from Angelica gigas roots. Nat. Prod. Sci., 8 : p.58~61.
  16. Lee, S. M. 2019. Antimelanogenic effect of isomaltol glycoside from red ginseng extract. J. Soc. Cosmet. Sci. Korea 45(3) : p.255-263. https://doi.org/10.15230/SCSK.2019.45.3.255
  17. Oh, S. J. and Mo, J. H., 2011. A comparative study on bioactivity of dried and fermented Salicornia herbacea extracts as cosmetics materials. Kor. J. Aesthet. Cosmetol. 9 : p.305~312.
  18. Park, J. H. and Kim, J. D., 2012. Study on awareness and purchase behavior of fermented cosmetics. J. Kor. Soc. Cosmet. Cosmetol. 2 : p.183~195.
  19. Park, M. J., Kang, S. J., Kim, A. J., 2009, Hypoglycemic effect of Angelica gigas Nakai extract in streptozotocin-induced diabetic rats. Korean J. Food Nutr. 22 : p.246~251.
  20. Seo, S. H., Park, S. E., Kim, E. J., Oh, D. G., and Son, H. S., 2017, Characterization of Fermented Mulberry Leaf Using Bacillus subtilis. J. Korean Soc. Food Sci. Nutr. 46(1) : p.108~114. https://doi.org/10.3746/JKFN.2017.46.1.108
  21. Sim S. Y., Park W. S., Shin H. S., Ok M., Cho Y. S., and Ahn H. Y., 2019, Physicochemical properties and biological activities of Angelica gigas fermented by Saccharomyces cerevisiae. Journal of Life Sci. vol. 29(10) : p.1136~1143. https://doi.org/10.5352/JLS.2019.29.10.1136
  22. Um, J. N., Min, J. W., Joo, K. S. and Kang, H. C. 2017. Antioxidant, anti-wrinkle activity and whitening effect of fermented mixture extracts of Angelica gigas, Paeonia lactiflora, Rehmannia chinensis and Cnidium officinale. Kor. J. Med. Crop. Sci. 25 : p.152~159. https://doi.org/10.7783/KJMCS.2017.25.3.152