• Title/Summary/Keyword: 접근데이터 블록

Search Result 182, Processing Time 0.022 seconds

A Dynamic Data Replica Deletion Strategy on HDFS using HMM (HMM을 이용한 HDFS 기반 동적 데이터 복제본 삭제 전략)

  • Seo, Young-Ho;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.241-244
    • /
    • 2014
  • 본 논문에서는 HDFS(Hadoop Distributed File System)에서 문제되고 있는 복제정책의 개선을 위해 HMM(Hidden Markov Model)을 이용한 동적 데이터 복제본 삭제 전략을 제안한다. HDFS는 대용량 데이터를 효과적으로 처리할 수 있는 분산 파일 시스템으로 높은 Fault-Tolerance를 제공하며, 데이터의 접근에 높은 처리량을 제공하여 대용량 데이터 집합을 갖는 응용 프로그램에 최적화 되어있는 장점을 가지고 있다. 하지만 HDFS 에서의 복제 메커니즘은 시스템의 안정성과 성능을 향상시키지만, 추가 블록 복제본이 많은 디스크 공간을 차지하여 유지보수 비용 또한 증가하게 된다. 본 논문에서는 HMM과 최상의 상태 순서를 찾는 알고리즘인 Viterbi Algorithm을 이용하여 불필요한 데이터 복제본을 탐색하고, 탐색된 복제본의 삭제를 통하여 HDFS의 디스크 공간과 유지보수 비용을 절약 할 수 있는 전략을 제안한다.

  • PDF

A Study on Contract Management Platform Based on Blockchain (블록체인 기반의 계약관리 플랫폼 연구)

  • Kim, Sunghwan;Kim, Younggon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.97-103
    • /
    • 2019
  • Electronic contract systems are widely used to integrate and manage the contract management process based on the development of ICT technology. Recently, improvement methods using block chain technology are being studied. However, contract management systems have processing performance, security vulnerabilities, data entry, and service accessibility issues. In this paper, we propose a block - chain based contract management platform with block chain, smart contract, and Rest API. The suggested platform includes the RPBFT algorithm which solves the processing performance and security vulnerability of the existing consensus authentication algorithm, and the algorithm to prevent data entry and enhance transparency of participants. The block-chain-based contract management platform proposed in this paper provides a use environment with improved processing performance, security, reliability, and transparency, and can be used through API without burdening construction. Therefore, The effect can be expected.

Low Power TLB System by Using Continuous Accessing Distinction Algorithm (연속적 접근 판별 알고리즘을 이용한 저전력 TLB 구조)

  • Lee, Jung-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.14A no.1 s.105
    • /
    • pp.47-54
    • /
    • 2007
  • In this paper we present a translation lookaside buffer (TLB) system with low power consumption for imbedded processors. The proposed TLB is constructed as multiple banks, each with an associated block buffer and a corresponding comparator. Either the block buffer or the main bank is selectively accessed on the basis of two bits in the block buffer (tag buffer). Dynamic power savings are achieved by reducing the number of entries accessed in parallel, as a result of using the tag buffer as a filtering mechanism. The performance overhead of the proposed TLB is negligible compared with other hierarchical TLB structures. For example, the two-cycle overhead of the proposed TLB is only about 1%, as compared with 5% overhead for a filter (micro)-TLB and 14% overhead for a same structure without continuos accessing distinction algorithm. We show that the average hit ratios of the block buffers and the main banks of the proposed TLB are 95% and 5% respectively. Dynamic power is reduced by about 95% with respect to with a fully associative TLB, 90% with respect to a filter-TLB, and 40% relative to a same structure without continuos accessing distinction algorithm.

A wear-leveling improving method by periodic exchanging of cold block areas and hot block areas (Cold 블록 영역과 hot 블록 영역의 주기적 교환을 통한 wear-leveling 향상 기법)

  • Jang, Si-Woong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.175-178
    • /
    • 2008
  • While read operation on flash memory is fast and doesn't have any constraints, flash memory can not be overwritten on updating data, new data are updated in new area. If data are frequently updated, garbage collection, which is achieved by erasing blocks, should be performed to reclaim new area. Hence, because the number of erase operations is limited due to characteristics of flash memory, every block should be evenly written and erased. However, if data with access locality are processed by cost benefit algorithm with separation of hot block and cold block, though the performance of processing is high, wear-leveling is not even. In this paper, we propose CB-MG (Cost Benefit between Multi Group) algorithm in which hot data are allocated in one group and cold data in another group, and in which role of hot group and cold group is exchanged every period. Experimental results show that performance and wear-leveling of CB-MG provide better results than those of CB-S.

  • PDF

A 4-way Pipelined Processing Architecture for Three-Step Search Block Matching Algorithm (3 단계 블록 매칭 알고리즘을 위한 4-경로 파이프라인 처리)

  • Jung, Sung-Tae;Lee, Sang-Seol;Nam, Kung-Moon
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1170-1182
    • /
    • 2004
  • A novel 4-way pipelined processing architecture is presented for three-step search block-matching motion estimation. For the 4-way pipelined processing, we have developed a method which divides the current block and search area into 4 subregions respectively and processes them concurrently. Also, we have developed memory partitioning method to access pixel data from 4 subregions concurrently without memory conflict. The architecture has been designed and simulated with C language and VHDL. Experimental results show that the proposed architecture achieves a high performance for real time motion estimation.

  • PDF

Design of Lab Framework for Effective Blockchain Education (효율적인 블록체인 교육을 위한 실습프레임워크 설계)

  • Kim, Do-Kyu
    • Journal of Industrial Convergence
    • /
    • v.18 no.6
    • /
    • pp.147-154
    • /
    • 2020
  • It is difficult to educate the overall operation of public and private blockchains with different characteristics. Recently, most education for blockchain is targeted at public blockchains such as Bitcoin and Ethereum. However, in an actual business environment, a private blockchain such as HyperLedger Fabric is used because access to corporate data is controlled through user authentication. In the case of HLF-based education, it is necessary to understand various components that are not in the public blockchain, such as peers, orderers, and channels. In this paper, a lab framework for HLF is designed for an efficient and systematic understanding of the functions and operations. The framework consists of HLF network, chaincode, and decentralized software control functions. Through the framework, the network configuration, distribution and activation of chaincode, and dApp execution process were checked step by step, and it was very easy to understand the overall flow for blockchain services. In addition, it is expected that a systematic understanding of the overall flow will be possible even in future network expansion.

Data Cache System based on the Selective Bank Algorithm for Embedded System (내장형 시스템을 위한 선택적 뱅크 알고리즘을 이용한 데이터 캐쉬 시스템)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.69-78
    • /
    • 2009
  • One of the most effective way to improve cache performance is to exploit both temporal and spatial locality given by any program executive characteristics. In this paper we present a high performance and low power cache structure with a bank selection mechanism that enhances exploitation of spatial and temporal locality. The proposed cache system consists of two parts, i.e., a main direct-mapped cache with a small block size and a fully associative buffer with a large block size as a multiple of the small block size. Especially, the main direct-mapped cache is constructed as two banks for low power consumption and stores a small block which is selected from fully associative buffer by the proposed bank selection algorithm. By using the bank selection algorithm and three state bits, We selectively extend the lifetime of those small blocks with high temporal locality by storing them in the main direct-mapped caches. This approach effectively reduces conflict misses and cache pollution at the same time. According to the simulation results, the average miss ratio, compared with the Victim and STAS caches with the same size, is improved by about 23% and 32% for Mibench applications respectively. The average memory access time is reduced by about 14% and 18% compared with the he victim and STAS caches respectively. It is also shown that energy consumption of the proposed cache is around 10% lower than other cache systems that we examine.

Pipelined Parallel Processing System for Image Processing (영상처리를 위한 Pipelined 병렬처리 시스템)

  • Lee, Hyung;Kim, Jong-Bae;Choi, Sung-Hyk;Park, Jong-Won
    • Journal of IKEEE
    • /
    • v.4 no.2 s.7
    • /
    • pp.212-224
    • /
    • 2000
  • In this paper, a parallel processing system is proposed for improving the processing speed of image related applications. The proposed parallel processing system is fully synchronous SIMD computer with pipelined architecture and consists of processing elements and a multi-access memory system. The multi-access memory system is made up of memory modules and a memory controller, which consists of memory module selection module, data routing module, and address calculating and routing module, to perform parallel memory accesses with the variety of types: block, horizontal, and vertical access way. Morphological filter had been applied to verify the parallel processing system and resulted in faithful processing speed.

  • PDF

An Incentive Mechanism Design for Trusted Data Management on Internet of Vehicle with Decentralized Approach (분산형 접근 방식을 적용한 차량 인터넷에서 신뢰할수 있는 데이터 관리를 위한 인센티브 메커니즘 설계)

  • Firdaus, Muhammad;Rhee, Kyung-Hyune
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.5
    • /
    • pp.889-899
    • /
    • 2021
  • This paper proposes a reliable data sharing scheme on the internet of vehicles (IoV) by utilizing blockchain technology for constructing a decentralized system approach. In our model, to maintain the credibility of the information messages sent by the vehicles to the system, we propose a reputation rating mechanism, in which neighboring vehicles validate every received information message. Furthermore, we incorporate an incentive mechanism based on smart contracts, so that vehicles will get certain rewards from the system when they share correct traffic information messages. We simulated the IoV network using a discrete event simulator to analyze network performance, whereas the incentive model is designed by leveraging the smart contract available in the Ethereum platform.

A Study on a Smart Home Access Control using Lightweight Proof of Work (경량 작업증명시스템을 이용한 스마트 홈 접근제어 연구)

  • Kim, DaeYoub
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.931-941
    • /
    • 2020
  • As natural language processing technology using machine learning develops, a Smart Home Network Service (SHNS) is drawing attention again. However, it is difficult to apply a standardized authentication scheme for SHNS because of the diversity of components and the variability of users. Blockchain is proposed for data authentication in a distributed environment. But there is a limit to applying it to SHNS due to the computational overhead required when implementing a proof-of-work system. In this paper, a lightweight work proof system is proposed. The proposed lightweight proof-of-work system is proposed to manage block generation by controlling the work authority of the device. In addition, this paper proposes an access control scheme for SHNS.