• 제목/요약/키워드: 점 스칼라 곱셈

검색결과 18건 처리시간 0.027초

이진 에드워즈 곡선 공개키 암호를 위한 257-비트 점 스칼라 곱셈의 효율적인 하드웨어 구현 (An Efficient Hardware Implementation of 257-bit Point Scalar Multiplication for Binary Edwards Curves Cryptography)

  • 김민주;정영수;신경욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.246-248
    • /
    • 2022
  • Bernstein이 제안한 새로운 타원곡선 형태인 이진 에드워즈 곡선 (binary Edwards curves; BEdC)는 예외점이 없어 완전한 덧셈 법칙이 만족한다. 본 논문에서는 투영 좌표계를 적용한 BEdC 상의 점 스칼라 곱셈의 효율적인 하드웨어 구현에 대해 기술한다. 점 스칼라 곱셈을 위해 modified Montgomery ladder 알고리듬을 적용하였으며, 257-비트 이진 덧셈기와 이진 제곱기, 32-비트 이진 곱셈기를 사용하여 하위 이진체 연산을 구현했다. Zynq UltraScale+ MPSoC 디바이스에 구현하여 설계된 BEdC 크립토 코어를 검증하였으며, 점 스칼라 곱셈 연산에 521,535 클록 사이클이 소요된다.

  • PDF

전력분석공격을 효율적으로 방어하는 타원곡선 비밀키의 랜덤화 (Randomization of Elliptic Curve Secret Key to Efficiently Resist Power Analysis)

  • 장상운;정석원;박영호
    • 정보보호학회논문지
    • /
    • 제13권5호
    • /
    • pp.169-177
    • /
    • 2003
  • 본 논문에서는 DPA와 Goubin의 공격을 동시에 방어하도록 하는 타원곡선 스칼라 곱셈 알고리듬의 일반적인 조건을 제시하며, 제시된 조건을 만족하면 두 공격 모두를 방지할 수 있음을 보인다. 이러한 조건을 만족하는 것으로는 Ha-Moon의 재부호화 방법을 이용한 랜덤 스칼라 곱셈 알고리듬이 있음을 보이고, 또한 Ha-Moon의 재부호 방법을 변형하여 두 공격을 방지하는 새로운 재부호화 알고리듬을 제안한다. 효율성 면에서 제안하는 스칼라 곱셈 방식은 Izu-Takagi의 스칼라 곱셈방법(y-좌표를 계산하지 않고 Montgomery-ladder를 사용)과 비교될 만큼 효율적이다. 제안하는 스칼라 곱셈은 랜덤화된 사영좌표와 기저점 은닉(bsae point blinding) 또는 isogeny 함수를 결합한 방법보다 빠르다. 또한 Izu-Takagi의 경우 은닉 또는 isogeny 함수 방법을 이용하면 상당량의 시스템 파라미터를 EEPROM에 저장해야 하는 단점이 있지만 이것은 제안하는 스칼라 곱셈 방법에는 해당되지 않는다.

전력분석 공격에 대응하는 타원곡선 상의 결합 난수 스칼라 곱셈 알고리즘 (A Combined Random Scalar Multiplication Algorithm Resistant to Power Analysis on Elliptic Curves)

  • 정석원
    • 사물인터넷융복합논문지
    • /
    • 제6권2호
    • /
    • pp.25-29
    • /
    • 2020
  • 타원곡선 암호 알고리즘은 RSA 공개키 알고리즘에 비해 짧은 키의 길이와 적은 통신 부하 때문에 IoT 환경에서 인증용으로 많이 사용되고 있다. 타원곡선 암호 알고리즘의 핵심연산인 스칼라 곱셈이 안전하게 구현되지 않으면, 공격자가 단순 전력분석이나 차분 전력분석을 사용하여 비밀 키를 찾을 수 있다. 본 논문에서는 스칼라 난수화와 타원곡선점 가리기를 함께 적용하고, 연산의 효율성이 크게 떨어지지 않으며 전력분석 공격법에 대응하는 결합 난수 타원곡선 스칼라 알고리즘을 제안한다. 난수 r과 랜덤 타원곡선 점 R에 대해 변형된 Shamir의 두 배 사다리 알고리즘을 사용하여 타원곡선 스칼라 곱셈 kP = u(P+R)-vR을 계산한다. 여기에서 위수 n=2l±c일 때, 2lP=∓cP를 이용하여 l+20 비트 정도의 u≡rn+k(modn)과 ν≡rn-k(modn)를 구한다.

이진 에드워즈 곡선 암호를 위한 점 스칼라 곱셈기 설계 (A Design of Point Scalar Multiplier for Binary Edwards Curves Cryptography)

  • 김민주;정영수;신경욱
    • 한국정보통신학회논문지
    • /
    • 제26권8호
    • /
    • pp.1172-1179
    • /
    • 2022
  • 이진 에드워즈 곡선 (Binary Edwards Curves; BEdC) 기반의 공개키 암호 시스템을 위한 점 스칼라 곱셈기 설계에 대해 기술한다. BEdC 상의 점 덧셈 (Point Addition; PA)과 점 두배 (Point Doubling; PD) 연산의 효율적인 구현을 위해 유한체 연산에 투영 좌표계를 적용하였으며, 이에 의해 점 스칼라 곱셈 (Point Scalar Multiplication; PSM)에 단지 1회의 유한체 역원 연산만 포함되어 연산성능이 향상되었다. 하드웨어 설계에 최적화를 적용하여 PA와 PD의 유한체 연산을 위한 저장 공간과 연산 단계를 약 40% 감소시켰다. BEdC를 위한 점 스칼라 곱셈기를 두 가지 유형으로 설계했으며, Type-I은 257-b×257-b 이진 곱셈기 1개를 사용하고, Type-II는 32-b×32-b 이진 곱셈기 8개를 사용한다. Type-II 설계는 Type-I 구조에 비해 LUT를 65% 적게 사용하나, 240 MHz로 동작할 때 약 3.5배의 PSM 연산시간이 소요되는 것으로 평가되었다. 따라서 Type-I의 BEdC 크립토 코어는 고성능이 필요한 경우에 적합하고, Type-II 구조는 저면적이 필요한 분야에 적합하다.

부호화 해밍 웨이트를 이용한 가변 타원곡선 암호시스템의 안전성 향상 (Enhanced Security of Flexible Elliptic Curve Cryptosystems using Signed Hamming Weights)

  • Lee, Mun-Kyu
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권10호
    • /
    • pp.588-592
    • /
    • 2004
  • 스칼라 곱셈은 정수 $textsc{k}$와 타원곡선 상의 한 점 P가 주어졌을 때 $textsc{k}$P를 계산하는 연산이다. 스칼라 곱셈을 빠르게 하기 위한 일반적인 방법으로 Agnew Mullin, Vanstone은 고정된 값의 해밍 웨이트를 갖는 스칼라 $textsc{k}$를 이용하는 방법을 제안하였다. 본 논문에서는 고정된 값의 부호화 해밍 웨이트를 갖는 $textsc{k}$를 이용하는 방법을 제안하고, 이 방법이 더 안전함을 보인다.

sABS 형태의 스칼라 곱셈 연산에 대한 새로운 단순전력 공격 (New Simple Power Analysis on scalar multiplication based on sABS recoding)

  • 김희석;김성경;김태현;박영호;임종인;한동국
    • 정보보호학회논문지
    • /
    • 제17권2호
    • /
    • pp.115-123
    • /
    • 2007
  • 스마트카드와 같이 계산 능력이나 메모리가 제한된 장치에 암호 시스템을 구현할 때, 장치 내에 내장되어 있는 부채널 공격을 고려한 암호학적인 알고리즘은 적은 메모리를 이용하여 효율적으로 수행되어야 한다. 스칼라 곱셈 연산은 타원곡선 암호시스템에서 중요하게 다뤄지는 연산이기 때문에 부채널 공격에 안전하게 구성되어야만 한다. 하지만 부채널 공격에 안전하다고 제시된 여러 대응방법조차도 때로는 고려되지 않은 분석법에 의해 그 취약점이 드러나곤 한다. SPA에 취약하지 않다고 알려진 더미 연산을 추가한 스칼라 곱셈 연산 알고리즘은 Doubling Attack에 의해 그 취약점이 드러났다. 그러나 스칼라 곱셈의 부채널 공격 대응 방법 중 하나인 Hedabou에 의해 제안된 sABS 방법은 Doubling attack이 적용되지 않는다. 본 논문에서는 기존의 Doubling attack을 활용하여 sABS 방법을 분석할 수 있는 새로운 강화된 Doubling attack을 제안하고, 실험적인 결과를 통해 자세한 공격 방법을 소개한다.

GF(p)와 GF(2m) 상의 다중 타원곡선을 지원하는 면적 효율적인 ECC 프로세서 설계 (An Area-efficient Design of ECC Processor Supporting Multiple Elliptic Curves over GF(p) and GF(2m))

  • 이상현;신경욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.254-256
    • /
    • 2019
  • 소수체 GF(p)와 이진체 $GF(2^m)$ 상의 다중 타원곡선을 지원하는 듀얼 필드 ECC (DF-ECC) 프로세서를 설계하였다. DF-ECC 프로세서의 저면적 설와 다양한 타원곡선의 지원이 가능하도록 워드 기반 몽고메리 곱셈 알고리듬을 적용한 유한체 곱셈기를 저면적으로 설계하였으며, 페르마의 소정리(Fermat's little theorem)를 유한체 곱셈기에 적용하여 유한체 나눗셈을 구현하였다. 설계된 DF-ECC 프로세서는 스칼라 곱셈과 점 연산, 그리고 모듈러 연산 기능을 가져 다양한 공개키 암호 프로토콜에 응용이 가능하며, 유한체 및 모듈러 연산에 적용되는 파라미터를 내부 연산으로 생성하여 다양한 표준의 타원곡선을 지원하도록 하였다. 설계된 DF-ECC는 FPGA 구현을 하드웨어 동작을 검증하였으며, 0.18-um CMOS 셀 라이브러리로 합성한 결과 22,262 GEs (gate equivalences)와 11 kbit RAM으로 구현되었으며, 최대 100 MHz의 동작 주파수를 갖는다. 설계된 DF-ECC 프로세서의 연산성능은 B-163 Koblitz 타원곡선의 경우 스칼라 곱셈 연산에 885,044 클록 사이클이 소요되며, B-571 슈도랜덤 타원곡선의 스칼라 곱셈에는 25,040,625 사이클이 소요된다.

  • PDF

단순 전력분석 공격에 대처하는 타원곡선 암호프로세서의 하드웨어 설계 (Hardware Design of Elliptic Curve processor Resistant against Simple Power Analysis Attack)

  • 최병윤
    • 한국정보통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.143-152
    • /
    • 2012
  • 본 논문은 스칼라 곱셈, Menezes-Vanstone 타원곡선 암호 및 복호 알고리즘, 점-덧셈, 점-2배 연산, 유한체상 곱셈, 나눗셈 등의 7가지 동작을 수행하는 GF($2^{191}$) 타원곡선 암호프로세서를 하드웨어로 설계하였다. 단순 전력 분석에 대비하기 위해 타원곡선 암호프로세서는 주된 반복 동작이 키 값에 무관하게 동일한 연산 동작으로 구성되는 몽고메리 스칼라 곱셈 기법을 사용하며, GF($2^m$)의 유한체에서 각각 1, (m/8), (m-1)개의 고정된 사이클에 완료되는 GF-ALU, GF-MUL, GF-DIV 연산장치가 병렬적으로 수행되는 동작 특성을 갖는다. 설계된 프로세서는 0.35um CMOS 공정에서 약 68,000개의 게이트로 구성되며, 시뮬레이션을 통한 최악 지연시간은 7.8 ns로 약 125 MHz의 동작속도를 갖는다. 설계된 프로세서는 320 kps의 암호율, 640 kbps을 복호율 갖고 7개의 유한체 연산을 지원하므로 다양한 암호와 통신 분야에 적용할 수 있다.

GF(p) 상의 다중 체 크기를 지원하는 고성능 ECC 프로세서 (A High-Performance ECC Processor Supporting Multiple Field Sizes over GF(p))

  • 최준영;신경욱
    • 한국정보통신학회논문지
    • /
    • 제25권3호
    • /
    • pp.419-426
    • /
    • 2021
  • NIST FIPS 186-2에 정의된 GF(p) 상의 5 가지 체 크기 (192, 224, 256, 384, 521 비트)와 8 가지의 산술연산 동작모드 (ECPSM, ECPA, ECPD, MA, MS, MM, MI, MD)를 지원하는 고성능 타원곡선 암호 프로세서 HP-ECCP를 설계하였다. HP-ECCP가 부채널 공격에 내성을 갖도록 만들기 위해, 타원곡선 점 스칼라 곱셈에 사용되는 개인키의 해밍웨이트에 무관하게 점 덧셈과 점 두배 연산이 균일하게 수행되는 수정된 left-to-right 이진 알고리듬을 적용하여 설계했다. 또한, 타원곡선 점 연산에 핵심이 되는 모듈러 곱셈 연산의 고성능 하드웨어 구현을 위해 Karatsuba-Ofman 곱셈 알고리듬, Lazy 축약 알고리듬, Nikhilam 나눗셈 알고리듬을 적용하여 설계했다. HP-ECCP를 180 nm CMOS 표준 셀 라이브러리로 합성한 결과 67 MHz의 동작 주파수에서 620,846 등가 게이트로 구현되었으며, 체 크기 256 비트의 ECPSM이 초당 2,200회 계산될 수 있는 것으로 평가되었다.

233-비트 이진체 타원곡선을 지원하는 암호 프로세서의 저면적 구현 (A small-area implementation of cryptographic processor for 233-bit elliptic curves over binary field)

  • 박병관;신경욱
    • 한국정보통신학회논문지
    • /
    • 제21권7호
    • /
    • pp.1267-1275
    • /
    • 2017
  • NIST 표준에 정의된 이진체(binary field) 상의 233-비트 타원곡선을 지원하는 타원곡선 암호(elliptic curve cryptography; ECC) 프로세서를 설계하였다. 타원곡선 암호 시스템의 핵심 연산인 스칼라 점 곱셈을 수정형 Montgomery ladder 알고리듬을 이용하여 구현함으로써 단순 전력분석에 강인하도록 하였다. 점 덧셈과 점 두배 연산은 아핀(affine) 좌표계를 기반으로 유한체 $GF(2^{233})$ 상의 곱셈, 제곱, 나눗셈으로 구현하였으며, shift-and-add 방식의 곱셈기와 확장 유클리드 알고리듬을 이용한 나눗셈기를 적용함으로써 저면적으로 구현하였다. 설계된 ECC 프로세서를 Virtex5 FPGA로 구현하여 정상 동작함을 확인하였다. $0.18{\mu}m$ 공정의 CMOS 셀 라이브러리로 합성한 결과 49,271 GE로 구현되었고, 최대 345 MHz의 동작 주파수를 갖는다. 스칼라 점 곱셈에 490,699 클록 사이클이 소요되며, 최대 동작 주파수에서 1.4 msec의 시간이 소요된다.