533 ARAGHE=EA A" 9 o] A 31 E Al 9 S(00410)

5353 g dlolEE

o]- &3 7PH edx4

Gz AL HAA F
(Enhanced Security of Flexible Elliptic Curve Cryptosystems
using Signed Hamming Weights)

=
o &

+

'l_'lL

(Mun-Kyu Lee)

2 o 2z FAL AF kot BHEILA 9 @ H Pt FoARE ol kPE Adsle dibolth &
As wzA 7] g durAed HHHo 2 Agnew, Mullin, Vanstone2 A E kel #° ¢iole
2 kE ol&ste WHE AUAddIY. B =EdAe 1P g 33 i Qe =
S Asta, o] W] o ¢hAEe BQlrh

FIs @ 2z FA, g1 T4, A BEE (NAF), 233 89 doe

Abstract Scalar multiplication is to compute kP when an integer k and an elliptic curve point P
are given. As a general method to accelerate scalar multiplication, Agnew, Mullin and Vanstone
proposed to use k’'s with fixed Hamming weights. We suggest a new method that uses k’s with fixed
signed Hamming weights and show that this method is more secure.

Key words :

' 1. Introduction

The use of elliptic curves in cryptography was
suggested by Koblitz [1] and Miller [2], and
extensive research has been done on elliptic curve
cryptosystems (ECCs). The most time consuming
operation in elliptic curve cryptosystems is scalar
multiplication &P for an integer %k and a point P.
A well-known algorithm for this operation is to
repeat doublings and additions, which we call the
binary method. The binary method requires [log#]
doublings and HW k) additions, where HW(k) is the
Hamming weight of %, ie., the number of 1’s in
the binary representation of &.

Since HW(k) = [log k] / 2 on the average, the
average number of required point operations for a

scalar multiplication kP is 3| log k] / 2.

CB ATE AWEY AZ1E S8 A MI-0326-08-00012] A9

2 FPEAS
T3 3 9 IFTHABNATY FREIZATE
mklee@etri.re.kr
=EES 0 20048 68 10

ArtgE 0 2004d 8¥ 9Y

scalar multiplication, elliptic curve, nonadjacent form (NAF), signed Hamming weight

The binary method is the additive analogue of
the repeated square-and-multiply algorithm for the
exponentiation g* in a general finite group. For an
elliptic curve, however, one can use the fact that
the complexity of a subtraction is almost the same
as that That is,

representation of & can be replaced with a signed

of an addition. the binary
binary representation which has fewer nonzero
terms, and then scalar multiplication is done by
repeating doublings and additions/subtractions. For
example, if we represent % as the nonadjacent
form (NAF) [3, 4], then the average number of
nonzero terms is [log #1 / 3, and the average
number of required point operations is reduced to
47 log k]l / 3.

On the other hand, there are complex multi-
plication methods for fast scalar multiplication
which use a special family of elliptic curves [5, 6,
7, 8]. However, we do not consider these methods,
focusing on general methods which are applicable
to any curve.

In many applications such as ECDSA signature

753} 37 doBEE of&d /H geFAd A= AAY FY 589

generation [9], we compute &P for randomly
chosen k. In [10], Agnew, Mullin and Vanstone
proposed to choose special £’s that have small
HW# to reduce the number of additions. (We will
call this approach the AMV method.) Scalar #
generated by this method has lower security than a
general one with the same length, since the size of
search space is smaller.

However, the AMV method has an important
application in an environment where various levels
of security are required with one elliptic curve. For
ECC hardware
HWFk) can be

used as a security parameter, ie, we choose a

example, with an accelerator

implementing only a single curve,

relatively large HW k) to protect sensitive data but
we use a smaller HWE) for less important data.
Note that otherwise, one should have multiple
curves to obtain many levels of security, which is
not acceptable to space-constrained environments.
Motivated by the AMYV method, we propose in
SHW k), where

SHW k) is the signed Hamming weight of £, ie,

this paper to use #’s with small
the number of nonzeros in the signed binary
representation of k. We show that our method is
more secure than that of [10] by showing that the
size of search space for % in our method is much
larger when the amount of computation is the

same.

2. Proposed method

Our method is based on the nonadjacent form
(NAF) of %, ie, a signed binary representation
with the property that no two consecutive digits

For example, ‘35 is uniquely
(1, 0,0,1,0,—1) in NAF, since

are nonzero [3].
represented as
3B=2%+2°-1.
We want to generate a random £ of length m
in NAF such that SHW#) is equal to a predefined
security parameter w. A naive approach is to
randomly select w locations for nonzero digits out
of m digits, and then to assign ‘1’ or ‘—1" to each
of these digits. (The remaining digits will be ‘0’s.)
However, k’'s generated in this way do not always
satisfy the NAF property. This problem can be
solved by a modification, where we use ‘10" and

‘=10 as single nonzero units instead of 1 and —1.
Algorithm 1 implements this observation, and Fig.1
shows an example for m=7, w=3.

Algorithm 1. Random Generation of %

1: Initially there is an array of m—w+1 consecutive
slots.

2. Assign two-digit binary number 10 to the first slot.
(This is to guarantee that 4>0 and that % has
exactly m digits.)

3: Choose w—1 random slots out of the remaining
m—w slots and assign 10 or —10 randomly to
each of them.

4. Assign 0 to each remaining slot.

k* with
m+1 signed binary digits. Note that %’ is even.

6. Set £ —k'/ 2.

5 Concatenate all slots to get a number

After Step 2

5T R B

Poassible cases After Step 6

after Step 4

fiofasft0]l 610, = 1 0 1 01 06 0 (=88
(10i10 ol 0, = 10 10-100 (=76)
(10baeltel 0l o > 1 010 1 0 0 (52
‘tottotiel 0l 0 == 1 01 01 0 0 (=44
SURRTIA 0. ™™ 10100 10 (=8
‘liel pro==> 1010 D1 0 (=79
"o leel 0, == 1 0-10 0 1 8 (=50
210kl obaol 0. == 1 01 0 01 0 (=46
falal ol gitel = 10100 01 =8
c10f1el ol 0kte => 1 6100 0-1 =79
cwbaol ol pite’ = 1 g1 0 D D A (=49
1whil gl okl = 1 01 0 0 0-1 (=47)
wlolwliwio = 10601010 &M
wlolwkioli o = 1001 0-10 70
‘10l ool o => 1 0 010 10 =58
10l olreliei @' ==> 1 8 0-1 01 0 (=58
wioltel of10 => 1 0 01 0 0 &1 (=73
ci0d olae! of;-m‘ W= 1 0 00100 -1 (=70
10l olwef efe == 1001001 =5
el oF10l ok == 10 0-10 0-1 (5%
el of eitelie, == 100 01 01 =69
wloleizable’ = 10 00 1 0-1 (=67
10l 0l ohaige’ == 1.0 0 0-1 0 1 (=61
‘10l el olaelio == 10 0 0-1 01 (=59

Fig. 1 Example for m=17, w=3.

Theorem 1. Algorithm 1 forms a uniform distri-
bution of k’s that have exactly m digits in NAF
and satisfy k>0, SHWE) = w.

Proof. Let A be the set of k’s generated by the
algorithm, and let B be the set of £’s that have
exactly m digits in NAF and satisfy £>0, SHWE) = w.

590 ARA8S =R A2 R o2 A 31 AW A 9 EZ(00410)

Then it is sufficient to show that A= B; and that
with the
to prove the

every element in A occurs same

probability. It is easy second
statement by the fact that every other choice in
Step 3 is mapped into a unique 4k, and the
probability of each choice is the same.

To prove that A= B, we only have to show that
BCA. (It is straighiforward to show that ACB.)
We will show that any element in B is also in A.
First, note that an element / in B is of the

following form:

n1Zeros n2Z€108 Ny ZELOS
RN — —
{=10---0£10---0%£1---£10---0,

where #;’s satisfy

nytngt ot ,=mm—w, 1)
R, Ryl 21, 20

If we set /" =2/, then !’ can be written as

n12€ros naZeros (rac +1)zeros
V=16-0+16-0%1---21 6.-0
Now, we partition /° as
(ra-1) (n2-1) -
zero slots zero slots zeto slots

v -1 5] ol [0 [0 -0) [F10) - [Z0) &

Then, it is easy to see that any /" of the above
form can be generated by Steps 1-4 of Algorithm
1. Note that the number of zero slots is

(m =D+ (ny— D+ +(ny— D+ n,=(m—w)— (w—1)
by (1), and the number of nonzero slots is w.
Thus the total number of slots is m—w+1, which
is the same as the value given in the initial step of
Algorithm 1. Hence, for every element /=B, we

can show that l=A. This completes the proof. []

3. Security

The security of elliptic curve schemes is based
on the difficulty of the elliptic curve discrete
logarithm problem (ECDLP), ie., finding & when
and Q=FkP are The best
general-purpose algorithm known for the ECDLP is

points P given.
the elliptic curve version of Pollard’s o algorithm

[11], which uses a pseudo-random sequence

generated from P and @. Its expected running
time is O(V #), and the amount of required memory
is a constant, where » is the order of P. (Note
that %A=n.) The

pseudo-random sequence In

Pollard’'s o algorithm does not seem to contain any

useful information about HWE and SHWE).
Hence, the expected running time of Pollard’s o
algorithm is still OV #n) for &’s with specific

HWE or SHWE), although the size of search
space for these #%’s is much smaller than #z. Thus,
our selection method and the method in [10] seem
to be as secure against Pollard's p attack as
random selection of general k.

The next choice of an attacker is the baby-step
is a time-memory
trade-off of the exhaustive search. Actually, this is

giant-step algorithm, which

the most powerful attack in the context of fixed
HW and SHW,
memory. Now, we describe

if the attacker has sufficient
several baby-step
glant-step algorithms that can be applied to our
setting, and we analyze the security of our method.
(Although most of the known results deal with
only the discrete logarithm problem (DLP), they
can be easily transformed into the algorithms for
ECDLP.)

The original and general baby-step giant-step
algorithm is the Shanks’ method (see [12], pp. 9,
575-576). It has time complexity O(/ #) (if hashing
is used), where = is the group order. Heiman [13]
proposed the first baby-step giant-step algorithm to
search the scalar space for &’s that have m bits
and a fixed Hamming weight w. Coppersmith ([14],
p.128) and Stinson [15] observed that this space

can be searched deterministically in O(m(Z}’;g))

steps by dividing 4 into two equal pieces so that
the Hamming weight of each piece is w/2. Stinson
also showed that the average-case complexity of

this algorithm is O(W\/—J)(log m)(ﬁ; %)), and that

there is a Las Vegas algorithm with complexity

m/ 2 . .
0(\/;)(1”/ 2)) Ignoring some minor factors, we get

(2

mately the square-root of the size of search spacel)

) for all of these cases, and this is approxi-

for &, ie, (:Z:%) Therefore, the baby-step

1) In (14) and (15). the size of search space is (ZZ) which is

from the setting where the most significant digit can be zero.
However, this stight difference almost does not affect our
overall computation.

253 37 HolEE o] M BTN Us AL AHA

giant-step algorithms given in [14] and [15] are
square-root algorithms.

The situation for the fixed signed Hamming
weight case is the same, ie., there exists a
square-root algorithm. We will show this fact by
computing the size of search space and the com-
plexity of algorithm, and then by comparing these
two values. First, the number of &’s that have m

signed binary digits and satisfy SHWA=w is 2

w—1

(77 9)x2+7", Using Stiring’s fomnil, nt(2) Vo,

we have
m— w! w—1_ m—w)! - 2%}
(et = I s by

(2=2)"" vz 2~
(LZEM_I)""Z‘”“ I3t D) - (—w;—l)m VZIw—1D

m—w ow

- (m—w) .
(m—2w+1) "+ (w—1) "

m-w

WV 2r(w— D(m—~ 2w+ 1)
(2)

we consider the time complexity of a

Next,
baby-step giant-step algorithm to find an m -digit
k with SHWE=w. As in [14] and [15], we can
use the time-memory trade-off approach, by
dividing # into two equal pieces® so that the

signed Hamming weight of each piece is w/ 2.

Then the time complexity is (m/ 2= w/ 2)><2 w2 if

w/2—1
some minor factors are ignored.4 Using Stirling’s
formula again, we have

(m/Z—w/Z)sz/z

w/2—1
z((m_w)'m——w'zw)1/2 @)
(m—2w+2) "W+ . (y—9)y P2
Vm—w

S VHw—2)m—2w+2)
Comparing (2) and (3), we can see that the time
complexity is approximately the square-root of the
size of search space.

We have there exist square-root
algorithms solving the ECDLP for both types of
scalars with fixed HW and fixed SHW, and that
these are the best attacks. Therefore, it makes

seen that

sense that we compare the security of these two

9) Note that we do not multiply 2% but multiply 2", since the
most significant digit is always ‘1"

3) For convenience, we assume m and w are even. If this is not
the case. the algorithms will be altered in a straightforward
manner.

4) This time. we don’t multiply 2”21, but multiply 2”2, since the
most significant digit could be -1 in each piece.

o%%

ko 591

types of scalars by directly comparing the sizes of
search spaces.

Table 1 shows that the size of search space of
our method is much larger than that of [10] when
these two methods are applied to the same values
of m and w in typical settings. (Note that the
required amounts of computation for a scalar
multiplication are the same for both methods, if
and w are fixed.) In another point of view, our
method uses less computation than that of [10] if
the same security level is required. For example,
the size of search space for m=160, w=40 of [10]
has the same order as that for m=160, w=230 of
our method which uses 25% fewer additions or

subtractions (excluding doublings).

Table 1 The sizes of search spaces for k.

AMV [10] Our method

(W21 | (azi)ee

w=20 1.8%10% 72x10%
m=160 | w=30 5.2x10% 4.2%10%
L w=40 2.2%107 31x10"
w=20 71x10% 46x10%
m=192 | w=30 1.7x10% 5.0%x10%
w=40 69x10% 1.6x10®

w=20 1.5%10% 1.4%10%
oo w=30 2.1%10% 15%10"
w=40 55%10% 75%10"

w=50 6.4x10% 3.2x10%

4. Discussion

kE’s with fixed
small SHWk when computing kP, and we showed

‘We proposed to choose special

that it is more secure than the original method that
uses k’s with fixed HW k). Note that our method
inherits a desirable property, ie., flexible security,
from the original method. Finally, we remark that
the overhead to implement our method (Algorithm
1) is negligible.

References

[1] Koblitz, N., “Elliptic curve cryptosystems,” Mathe-
matics of Computation, Vol.48, pp.203-209, 1987.
[2] Miller, V., “Use of elliptic curves in crypto-

592

(3

—

[4]

[5]

{6]

£71]

(8]

(91

{101

{11l

(12}

[13]

[14]

[15]

ARAYSGH=E A A2" B ol Al 31 W Al 9 (M0

graphy,” CRYPTO '85, LNCS, Vol218, pp.417-428,
Springer, 1986.

Morain, F. and Olivos, J, “Speeding up the
computations on an elliptic curve using addition-
subtraction chains,” Theoretical Informatics and
Applications, Vol.24, pp.531-543, 1990.

Solinas, J.A., "An improved algorithm for arith—
metic on a family of elliptic curves,” CRYPTO
97, LNCS, Vol.1294, pp.357-371, Springer, 1997.
Koblitz, N., "CM-curves with good cryptographic
properties,” CRYPTO '91, LNCS, Vol.576, pp.279-
287, Springer, 1991.

Smart, N.P., "Elliptic curve cryptosystems over
small fields of odd characteristic,” Journal of
Cryptology, Vol.12, pp.141-151, 1999.

Gallant, R.P., Lambert, R.J.,, and Vanstone, S.A.,
"Faster point multiplication on elliptic curves with
efficient endomorphisms,” CRYPTO 2001, LNCS,
Vol.2139, pp.190-200, Springer, 2001.

Park, T.J., Lee, MK, Kim, E., and Park, K., "A
general expansion method using efficient endo-
morphisms,” ICISC 2003, LNCS, Vol.2971, pp.112-
126, Springer, 2004.

ANSI X962, Public Key Cryptography for the
Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA), 1999.
Agnew, G.B. Mullin, R.C, and Vanstone, S.A,
"An implementation of elliptic curve cryptosys-
tems over F,s" IEEE Journal on Selected Areas

in Communications, Vol.11, No.5, pp.804-813, 1993.
Harper, G., Menezes, A., and Vanstone, S.A.,
"Public-key cryptosystems with very small key
lengths,” EUROCRYPT ‘92, LNCS, Vol.658,
pp.163-173, Springer, 1993.

Knuth. D.E., The Art of Computer Programming,
Vol. 3: Sorting and Searching, Addison-Wesley,
Reading, Mass., 1973.

Heiman, R., "A note on discrete logarithms with
special structure,” EUROCRYPT 92, LNCS,
Vol.658, pp.454-457, Springer, 1993.

Menezes, A., van Qorschot, P.C., and Vanstone,
S.A., Handbook of Applied Cryptography, CRC
Press, 1996.

Stinson, D.R., "Some baby-step giant-step algori-
thms for the low hamming weight discrete
logarithm problem,” Mathematics of Computation,
Vol.71, pp.379-391, 2002.

o] ¥
1996¢ 29 AMgWstn FREITGH &

DAL 19989 29 Mguistm AFEFS
I AAL 20039 89 Aletigtw M3

FEIFEE whab 20039 sE~EA @

| FAARAATY AHERZATE. B4
©Eoke FHFEH)E, AdFd

