• Title/Summary/Keyword: 점화효과

Search Result 154, Processing Time 0.023 seconds

Elimination of Apple stem grooving virus from 'Mansoo' pear (Pyrus pyrifolia L.) by an antiviral agent combined with shoot tip culture (항바이러스제 처리와 경정배양에 의한 배(Pyrus pyrifolia L.) '만수'의 Apple stem grooving virus 무병화)

  • Cho, Kang Hee;Shin, Juhee;Kim, Dae-Hyun;Park, Seo Jun;Kim, Se Hee;Chun, Jae An;Kim, Mi Young;Han, Jeom Hwa;Lee, Han Chan
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.391-396
    • /
    • 2016
  • In this study, in vitro-cultured 'Mansoo' pear (Pyrus pyrifolia L.) plants infected with Apple stem grooving virus (ASGV) were used for testing the efficiency of the virus elimination methods. The shoot tips cut from infected plants were treated by thermotherapy ($37^{\circ}C$), cold therapy ($4^{\circ}C$), chemotherapy with ribavirin, and combination of these methods. Treatment periods were 2, 4, and 8 weeks, and concentrations of ribavirin were 20 and $40mg{\cdot}L^{-1}$. The efficiency of ASGV elimination was evaluated by reverse transcription polymerase chain reaction. The shoot survival rate was the highest at 100% after cold therapy, chemotherapy, and combination of two methods, while the rate was the lowest at 33.3% after thermotherapy for 2 weeks. The shoot survival rate after chemotherapy decreased gradually as the treatment period was prolonged. The ASGV elimination rate was the highest at 100% after ribavirin treatment at a concentration of $40mg{\cdot}L^{-1}$ and combination of ribavirin treatment and thermotherapy for 2 weeks, whereas the ASGV elimination rate after cold therapy was the lowest at 16.7%. However, the efficiency of ASGV elimination was enhanced up to 43.3% by the combination of cold therapy and ribavirin treatment. The efficiency of ASGV elimination for all treatments was increased as the treatment period was prolonged. Based on these results, we suggest that ribavirin treatment at a concentration of $20mg{\cdot}L^{-1}$ for 4 weeks or at a concentration of $40mg{\cdot}L^{-1}$ for 2 weeks combined with shoot tip culture was efficient for the elimination of ASGV from pear.

Influence of Elevated CO2 and Air Temperature on Photosynthesis, Shoot Growth, and Fruit Quality of 'Fuji'/M.9 Apple Tree (CO2 및 기온 상승이 '후지'/M.9 사과나무의 광합성, 신초생장 및 과실품질에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon;Park, Moo-Yong;Song, Yang-Yik;Chung, Kyeong-Ho;Nam, Jong-Chul;Han, Jeom-Hwa;Do, Gyung-Ran
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.4
    • /
    • pp.245-263
    • /
    • 2013
  • This study was conducted to find out the influence of elevated atmospheric $CO_2$ concentrations and air temperature on photosynthesis and fruit quality of 'Fuji'/M.9 apple trees and to investigate these to the effects of climate change during the last four years (2009-2012). The treatments employed were: 'Ambient' (ambient temperature + ambient $CO_2$ concentration); 'High $CO_2$' (ambient temperature + elevated $CO_2$ concentration); 'High Temp'. (elevated temperature + ambient $CO_2$ concentration); and 'High $CO_2$ + High Temp'. (elevated temperature + elevated $CO_2$ concentration). The elevated temperature plots were maintained at $4^{\circ}C$ higher than ambient air temperature, while the elevated $CO_2$ plots were maintained at 700 ${\mu}mol{\cdot}mol^{-1}$. Annual treatment period was applied from end of April to beginning of November for four years. Results showed that elevated $CO_2$ decreased stomatal conductance and leaf SPAD value, but increased photosynthetic rate, intercellular $CO_2$ concentration (Ci), and starch content of mesophyll tissue. In the vegetative growth, elevated temperature increased total number of shoot and total shoot growth per tree, but elevated $CO_2$ decreased average shoot length. In the fruit quality, elevated $CO_2$ increased soluble solid content, fruit red color, and ethylene production. In conclusion, elevated $CO_2$ increased photosynthetic rate of apples during the early growth, but effect of increased photosynthetic rate due to elevated $CO_2$ was decreased during latter growth stage. Elevated temperature, on the other hand, tended to decrease photosynthetic rate of apples during the early growth, but that tended to increase during latter growth stage. Both elevated $CO_2$ and temperature tended to decrease the degree of decreased photosynthetic rate due to each factor.

An Interdisciplinary Approach to the Human/Posthuman Discourses Emerging From Cybernetics and Artificial Intelligence Technology (4차 산업혁명 시대의 사이버네틱스와 휴먼·포스트휴먼에 관한 인문학적 지평 연구)

  • Kim, Dong-Yoon
    • Journal of Broadcast Engineering
    • /
    • v.24 no.5
    • /
    • pp.836-848
    • /
    • 2019
  • This paper aims at providing a critical view over the cybernetics theory especially of first generation on which the artificial intelligence heavily depends nowadays. There has been a commonly accepted thought that the conception of artificial intelligence could not has been possible without being influenced by N. Wiener's cybernetic feedback based information system. Despite the founder of contemporary cybernetics' ethical concerns in order to avoid an increasing entropy phenomena(social violence, economic misery, wars) produced through a negative dynamics of the western modernity regarded as the most advanced form of humanism. In this civilizationally changing atmosphere, the newly born cybernetic technology was thus firmly believed as an antidote to these vices deeply rooted in humanism itself. But cybernetics has been turned out to be a self-organizing, self-controlling mechanical system that entails the possibility of telegraphing human brain (which are transformed into patterns) through the uploading of human brain neurons digitalized by the artificial intelligence embedded into computing technology. On this background emerges posthuman (or posthumanism) movement of which concepts have been theorized mainly by its ardent apostles like N. K. Hayles, Neil Bedington, Laurent Alexandre, Donna J. Haraway. The converging of NBIC Technologies leading to the opening of a much more digitalizing society has served as a catalyst to promote the posthuman representations and different narratives especially in the contemporary visual arts as well as in the study of humanities including philosophy and fictional literature. Once Bruno Latour wrote "Modernity is often defined in terms of humanism, either as a way of saluting the birth of 'man' or as a way of announcing his death. But this habit is itself modern, because it remains asymmetrical. It overlooks the simultaneous birth of 'nonhumaniy' - things, or objects, or beasts, - and the equally strange beginning of a crossed-out God, relegated to the sidelines."4) These highly suggestive ideas enable us to better understand what kind of human beings would emerge following the dazzlingly accelerating advancement of artificial intelligence technology. We wonder whether or not this newly born humankind would become essentially Homo Artificialis as a neuronal man stripping off his biological apparatus. However due to this unprecedented situation humans should deal with enormous challenges involving ethical, metaphysical, existential implications on their life.

In vitro micropropagation of M.26 (Malus pumila Mill) apple rootstock and assessment of the genetic diversity of proliferated plantlets using simple sequence repeat markers (사과 대목 M.26 (Malus pumila Mill)의 기내 대량번식 및 simple sequence repeat 마커를 이용한 증식된 식물체의 유전적 다양성 평가)

  • Cho, Kang Hee;Han, Bong Hee;Han, Jeom Hwa;Park, Seo Jun;Kim, Se Hee;Lee, Han Chan;Kim, Mi Young;Kim, Myung-Su
    • Journal of Plant Biotechnology
    • /
    • v.45 no.4
    • /
    • pp.382-391
    • /
    • 2018
  • The objective of this study was to determine the most effective medium condition of shoot proliferation and root formation for the efficient in vitro micropropagation of M.26 (Malus pumila Mill). Simple sequence repeat (SSR) markers were used to analyze the genetic diversity of micro-propagated and greenhouse grown M.26. Shoot proliferation was carried out in MS (Murashige and Skoog) containing benzyladenin (BA, $0.5{\sim}5.0mg{\cdot}L^{-1}$) and thidiazuron (TDZ, $0.01{\sim}0.1mg{\cdot}L^{-1}$). The highest number of shoots (10.67 shoots per explant) was induced by adding BA at a concentration $1.0mg{\cdot}L^{-1}$. TDZ treatments caused higher hyperhydricity rate in cultured explants than in BA treatments. There was no significant effect of both BA and auxin on shoot proliferation, and the optimum proliferation medium for M.26 was MS medium containing $1.0mg{\cdot}L^{-1}$ BA. To find a suitable medium composition for shoot rooting, we tested different concentrations indole-3-butyric acid (IBA) and ${\alpha}$-naphthaleneacetic acid ($0.5{\sim}5.0mg{\cdot}L^{-1}$), MS medium (1/4-1), sucrose ($0{\sim}30g{\cdot}L^{-1}$). The shoots showed good rooting on half-strength MS medium containing $1.0mg{\cdot}L^{-1}$ IBA and $15-20g{\cdot}L^{-1}$ sucrose. The rooting rate (100%), number of roots (10.45 ~ 13.60 roots per explant), root length (7.41 ~ 8.33 cm), and shoot length (4.93 ~ 5.38 cm) were good on this medium. Fifteen SSR primers were detected in a total of 30 alleles in 20 micro-propagated plantlets, all SSR profiles from micro-propagated plantlets were monomorphic and similar to greenhouse grown control plantlet M.26 plant. The results indicated that M.26 micro-propagated plantlets were genetically stable.