• Title/Summary/Keyword: 점화플러그

Search Result 33, Processing Time 0.028 seconds

Analysis of Electromagnetic Wave for Spark Plug Cable in Distributorless Spark Ignition System (무배전기식 불꽃 점화 시스템의 점화 플러그 케이블에서 발생되는 전자파의 분석)

  • Kang, Sang-Won;Choe, Gwang-Je;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • It is an analysis about electromagnetic wave which is generated from a Spark plug cable of Distributorless spark ignition system. In case of Distributorless spark ignition system, high frequency generation is an ignition coil and Spark plug cable and Spark plug could be activated with electromagnetic wave radiation antenna. I calculated a resonant frequency with HFSS by measuring length of Spark plug cable and Spark plug. The antenna was considered as ${\lambda}/4$ monopole antenna in this calculation. According to power spectrum measurement analysis of engine room radiated electromagnetic wave and calculated Resonant frequency, it is possible to find out that the Distributorless spark ignition system radiates high frequency energy in certain frequency band.

A Study on Emission Characteristics according to Spark Plug Location in a Single SI Engine (점화플러그 위치에 따른 SI 단기통 엔진의 배출가스특성에 관한 연구)

  • Kim, Dae-Yeol;Han, Young-Chool;Baik, Doo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2082-2087
    • /
    • 2004
  • In this study, the variation of spark plug location in the combustion chamber was investigated for the sake of emission characteristics from SI engine by using PDA valve. The swirl is ong of the important parameters that effects emission characteristics. PDA valve has been used to satisfy the requirements of sufficient swirl generation to improve combustion and emission reduction to effect on flow profile on a combustion chamber. Especially, the variation of spark plug location have an important effect to analyze exhaust gas and the early flame propagative process. Therefore, this test is forced that injection timing, spark timing and intake air motion govern the stable combustion. From the results, it showed that the variable spark plug location and PDA valve can be reduced exhaust gas.

  • PDF

Study for Failure Examples Involved to Spark Plug Assembling Part Damage, Timing Maladjustment and Alien Substance Insertion in Intake Valve Part on LPG Vehicle Engine (자동차용 LPG 엔진의 점화플러그 장착 부 손상, 점화시기 조정불량, 흡입밸브 부 이물질유입 고장사례 연구)

  • Lee, IL Kwon;Kook, Chang Ho;Ham, Sung Hoon;Kim, Sung Mo;Hwang, Han Sub;Jung, Dong Hwa;Moon, Hak Hoon;Lee, Jeong Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.2
    • /
    • pp.22-27
    • /
    • 2021
  • This paper is a purpose to study the failure examples for LPG vehicle. The first example, the researcher certified the incongruity phenomenon decreased engine power by ignition fire leakage because of spark plug threaded part damage assembling in cylinder head. The second example, the timing mark that accurately adjusting the camshaft and crankshaft position were twisted about 0.5 block each other. Finally, the researcher seeked the disharmony phenomenon as it couldn't set ignition timing. The third example, the researcher knew the failure phenomenon by interrupted the closing period for intake valve moving with air flow in the number 3 port of cylinder head as the foreign substance in cylinder head didn't remove. Therefore, the manager of a car has to thorough going inspect and the manufacture of a car must remove the cause of failure with quality assurance.

A Study on the knock and misfire detection system using by Spark-plug in a Gasoline Engine (가솔린기관에서 스파크플러그를 이용한 노크 및 실화의 동시검출시스템 개발에 관한 연구)

  • 조민석;박재근;황재원;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.23-31
    • /
    • 2000
  • Knock and misfire, kinds of abnormal combustion, are highly undesirable effect on the internal combustion engine. So, it is important to detect these avnormal combuition and control the ignition timing etc. to avoid these mal-effect factors in real engine system. In this study, the system which detects the knock and the misfire using by spark plug is presented. This system is based on the effect of modulation breakdown voltage(BDV) between the spark gaps. The voltage drop between spark plug electrodes, when an electrical breakdown is initiated, depends on the temperature and pressure in combustion chamber. So, we can detect knock and misfire that produce changes in gas temperature and pressure (consequently, its density) using by BDV signal change which carries information about the character of combustion.

  • PDF

Analysis of Electro-magnetic Wave radiating from an Ignition Plug and High-voltage Cable inside an Engine Room (자동차의 점화 플러그와 고압 케이블에서 발생하는 전자파에 대한 해석)

  • 최광제;조시기;정원락;장성국;강신한
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.209-215
    • /
    • 2004
  • This paper presents the frequency range and an analysis method to find the dominant source of electro-magnetic wave which originates from a spark ignition in engine room. Applying the distributed constant equivalent circuit theory the radiation of probable electro-magnetic wave around an ignition plug and a high voltage cable is studied analytically. Experimental studies are also conducted by measuring the frequency spectrum to obtain the radiating characteristics of electro-magnetic wave. Results from both analytical and experimental studies confirm that an ignition plug and a high voltage cable are dominant sources of electro-magnetic wave and that the radiating frequency is ranged from 1.3[GHz] to 2[GHz] band.

Investigation on Combustion Characteristics According to Spark Plug Protrusion in SI Engine (점화플러그 삽입 위치에 따른 SI 엔진의 연소특성에 관한 연구)

  • Han Young-Chool;Kim Dae-Yeol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1163-1171
    • /
    • 2004
  • The variation of spark plug location have one of the effects on combustion characteristics. Several parameters of the effect on combustion characteristics are shape of combustion chamber, the spark plug position, turbulence flow and so on. This paper presents an experimental study according to variation of spark plug protrusion and PDA valve which have effects on characteristics of combustion and emission in single cylinder gasoline engine. Also, this paper emphasized that combustion stabilization was making by way of the reinforcement of the turbulent flow with the PDA valve. A feasibility and necessity of combustion pressure based cylinder spark timing control according to spark plug protrusion has been examined. So, this was obtained COV$\_$imep/ and the mass fraction burned(MFB) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable spark plug location and PDA valve can be improved fuel consumption and be available for the combustion stability.

An Experimental Study on Exhaust Emission in a Gasoline Engine Using PDA and Spark Plug Location (점화플러그 삽입위치와 PDA 밸브를 이용한 가솔린엔진의 배출가스에 대한 실험적 연구)

  • Kim Dae-Yeol;Kim Dae-Yeol;Kim Yang-Sul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.32-40
    • /
    • 2005
  • The purpose of this study is to investigate variation of spark plug protrusion and PDA valve on the exhaust emission in a gasoline engine. Swirl is one of the important parameters that affects the characteristics of combustion. PDA valve has been developed to satisfy requirements of sufficient swirl generation for improving the combustion and reducing of emission level. Also, especially, the variation of spark plug protrusion have an important effect to the early flame propagative process. This is largely due to the high flame speed by short of flame propagation distance. So, this is forced that injection timing, spark timing and intake air motion govern the stable combustion. As a result, using two combustion chamber, without charge of engine specification and the variable spark plug location and PDA valve could be reduced exhaust gas at a part load engine conditions(1500rpm imep 3.9bar, 2000rpm imep 3.2bar, 2400rpm imep 3.9bar).

An Experimental Study on the Ignition Characteristic of Ignition Plug (점화플러그의 점화특성에 관한 실험적 연구)

  • Sim, Sang-Cherl;Cho, Tae-Young;Jung, Byoung-Koog;Song, Kyu-Keun;Jung, Jea-Youn;Kim, Hyung-Gon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2088-2093
    • /
    • 2004
  • Harmful elements from the exhaust gases are caused by incomplete combustion of mixture inside the engine cylinder and this abnormal combustion like misfire or partial burning is the direct cause of the air pollution and engine performance degradation. In this study, I obtain the shapes of spark, voltage and current generated when changing the experimental parameters such as grounded electrode shapes, electrode gap and the material of center electrodes. After that, I produce ignition energy by using the voltage and current and classify ignition energy into capacitive discharge energy and inductive discharge energy.

  • PDF

A Modeling of Flame Initiation and Its Development in SI Engines (SI 기관에서 초기 화염의 생성 및 성장에 대한 모델링)

  • Song, Jeonghoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.288-298
    • /
    • 1999
  • In spark ignited engines, the electrical spark not only sets the time for the onset of combustion but also is able to greatly influence the character of the initial flame growth and the subsequent combustion, and thereby can influence engine performance. The relative importance of the ignition energy is particularly high under lean or high residual gas or exhaust gas recirculation (EGR). In this study, a modeling of flame Initiation and its development is proposed. Submodels consist in representing of cylinder pressure and temperature, heat transfer to cylinder wall, and flame kernel heat transfer to ambient air and to spark plug electrodes. The breakdown process and the subsequent electrical power input initially control the kernel growth while intermediate growth is mainly dominated by diffusion or conduction. Then, the flame propagates by the chemical energy, and laminar and turbulent flame velocity.